Total Pages -03

PKC/PG/IIIS/CEM-302/24

2024 M.Sc.

3rd Semester Examination CHEMISTRY PAPER – CEM-302

> Full Marks:50 Time: 2 Hours

(CEM 302-Advanced Inorganic Chemistry-I)
Group-A

Answer any four questions

 $2 \times 4 = 8$

1. Identify **R**

- 2. For the d² electronic system calculate the ground state term symbol and draw the Orgel diagram
- 3. Give an example for double-decker compound and 1,1 migratory insertion reaction.
- 4. What is orthometallation reaction?
- 5. Discuss agostic interaction with suitable example.
- 6. How does the Jahn-Teller distortion affect the energy levels of the orbitals?

Group-B

Answer any four questions

 $4 \times 4 = 16$

- 7. How does the alteration of transition dipole moments affect the intensity of electronic transitions? What is the effect of lowering symmetry on the transition dipole moments of a molecule?(2+2)
- 8. What is Wilkinson's catalyst? For what type of reaction Wilkinson's catalyst is commonly used? Describe the mechanism of hydrogenation of alkenes using Wilkinson's catalyst. (2+2)
- 9. i) Give one example of the insertion of CO into a Metal-Alkyl Bond.

ii) Identify A and B

- 10. What are the reactants and products in the Monsanto acetic acid preparation process? Write the catalytic cycle for the Monsanto acetic acid. (1+3)
- 11. Describe the differences between sp³, sp², and sp hybrid orbitals in terms of their symmetry.
- 12. What is the driving force for carbonyl insertion? Predict the products of the followings: (2+2)

Group-C

Answer any two questions

 $2 \times 8 = 16$

- 13. i) How does the Tanabe-Sugano diagram relate the energy of the d-orbitals to the ligand field strength? ii) Draw the Tanabe-Sugano diagram for d^2 orbital. (3 + 5)
- 14. i) What are the most common catalysts used in the hydroformylation reactions? ii) Discuss the mechanism of the hydroformylation reaction. (iii) Draw the MO diagram of $[Cr(H_2O)_6]^{3+}$. (2+4+2)

- 15. i) Determine the symmetry and combinations of LGOs and metal orbitals in a square planar complex. ii) Decarbonylation of cis-[(CH₃CO)Mn(*CO)(CO)₄] through the CO-insertion Pathway and CH₃-migration pathway give the different stereochemical results. -justify. iii) Synthesize [Cp₃Ni₂]⁺ from nickelocene. (4+2+2)
- 16. With the help of group theory determine the symmetries of the group of orbitals of F atoms which are effective for σ -bond formation in PF₅ molecule. Write the appropriate SALCs for these symmetries. Construct a qualitative σ -bonding M.O energy level diagram for PF₅. (Given below the character table for D_{3h} point group). (6+2)

Character table for D_{3h} point group

$\mathbf{D_{3h}}$	E	2C ₃	3C'2	$\sigma_{\mathbf{h}}$	2S ₃	3σ _v	linear, rotations	quadratic
A'1	1	1	1	1	1	1		x^2+y^2 , z^2
A'2	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x, y)	$(\mathbf{x}^2 - \mathbf{y}^2, \mathbf{x}\mathbf{y})$
A"1	1	1	1	-1	-1	-1		
A''2	1	1	-1	-1	-1	1	z	
Е"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

.....

Internal Assessment-10