| Total Pages -03 | |-----------------| |-----------------| #### PKC/PG/IIIS/CEM-302/24 2024 M.Sc. 3rd Semester Examination CHEMISTRY PAPER – CEM-302 > Full Marks:50 Time: 2 Hours (CEM 302-Advanced Inorganic Chemistry-I) Group-A # Answer any four questions $2 \times 4 = 8$ 1. Identify **R** - 2. For the d² electronic system calculate the ground state term symbol and draw the Orgel diagram - 3. Give an example for double-decker compound and 1,1 migratory insertion reaction. - 4. What is orthometallation reaction? - 5. Discuss agostic interaction with suitable example. - 6. How does the Jahn-Teller distortion affect the energy levels of the orbitals? ## Group-B # Answer any four questions $4 \times 4 = 16$ - 7. How does the alteration of transition dipole moments affect the intensity of electronic transitions? What is the effect of lowering symmetry on the transition dipole moments of a molecule?(2+2) - 8. What is Wilkinson's catalyst? For what type of reaction Wilkinson's catalyst is commonly used? Describe the mechanism of hydrogenation of alkenes using Wilkinson's catalyst. (2+2) - 9. i) Give one example of the insertion of CO into a Metal-Alkyl Bond. ii) Identify A and B - 10. What are the reactants and products in the Monsanto acetic acid preparation process? Write the catalytic cycle for the Monsanto acetic acid. (1+3) - 11. Describe the differences between sp³, sp², and sp hybrid orbitals in terms of their symmetry. - 12. What is the driving force for carbonyl insertion? Predict the products of the followings: (2+2) #### Group-C Answer any two questions $2 \times 8 = 16$ - 13. i) How does the Tanabe-Sugano diagram relate the energy of the d-orbitals to the ligand field strength? ii) Draw the Tanabe-Sugano diagram for d^2 orbital. (3 + 5) - 14. i) What are the most common catalysts used in the hydroformylation reactions? ii) Discuss the mechanism of the hydroformylation reaction. (iii) Draw the MO diagram of $[Cr(H_2O)_6]^{3+}$. (2+4+2) - 15. i) Determine the symmetry and combinations of LGOs and metal orbitals in a square planar complex. ii) Decarbonylation of cis-[(CH₃CO)Mn(*CO)(CO)₄] through the CO-insertion Pathway and CH₃-migration pathway give the different stereochemical results. -justify. iii) Synthesize [Cp₃Ni₂]⁺ from nickelocene. (4+2+2) - 16. With the help of group theory determine the symmetries of the group of orbitals of F atoms which are effective for σ -bond formation in PF₅ molecule. Write the appropriate SALCs for these symmetries. Construct a qualitative σ -bonding M.O energy level diagram for PF₅. (Given below the character table for D_{3h} point group). (6+2) Character table for D_{3h} point group | $\mathbf{D_{3h}}$ | E | 2C ₃ | 3C'2 | $\sigma_{\mathbf{h}}$ | 2S ₃ | 3σ _v | linear,
rotations | quadratic | |-------------------|---|-----------------|------|-----------------------|-----------------|-----------------|----------------------|---| | A'1 | 1 | 1 | 1 | 1 | 1 | 1 | | x^2+y^2 , z^2 | | A'2 | 1 | 1 | -1 | 1 | 1 | -1 | Rz | | | E' | 2 | -1 | 0 | 2 | -1 | 0 | (x, y) | $(\mathbf{x}^2 - \mathbf{y}^2, \mathbf{x}\mathbf{y})$ | | A"1 | 1 | 1 | 1 | -1 | -1 | -1 | | | | A''2 | 1 | 1 | -1 | -1 | -1 | 1 | z | | | Е" | 2 | -1 | 0 | -2 | 1 | 0 | (R_x, R_y) | (xz, yz) | **Internal Assessment-10**