2022 M.Sc.

3rd Semester Examination

PHYSICS

PAPER - PHS-302

Full Marks: 50

Time: 2 Hours

(PHS 302.1-Molecular Spectroscopy and Laser Physics)

1. Answer any two bits:

 $2 \times 2 = 4$

- (a) What is the change in the rotational constant B when hydrogen is replaced by deuterium in the hydrogen molecule?
- (b) What is the Born-Oppenheimer approximation?
- (c)Draw the *Morse curve* for a diatomic molecule undergoing an-harmonic oscillations
- (d) Which among the following molecule will show vibrational spectra: CO, CO_2 , NO, NH_3 , H_2
- 2. Answer any two bits:

 $2 \times 4 = 8$

- (a) What are hot bands? Why are they called so?
- (b) The frequency of stretching vibration in CH₃OH is 3300 cm⁻¹. Estimate the frequency of OD stretching vibration in CH₃OD?
- (c) Deduce the relation between Einstein's A, B coefficients.
- (d) How many revolutions per second does a CO molecule make when in J=3 state?
- 3. Answer any one of the following:

 $1 \times 8 = 8$

(a) Deduce the expression for the rotational energy levels in a rigid diatomic molecule. Schematically show the energy levels. Explain the effect of isotopes in the absorption bands in such molecules.

Page-01

(Turn over)

(b)Deduce the expression for the vibrational energy levels in a diatomic vibrating rotator and schematically show the energy levels showing the P and R branches. Find the state for which the molecular population will be maximum.

Internal Assessment-05

(PHS 302.2 - NUCLEAR PHYSICS - I)

1. Answer any two bits:

 $2 \times 2 = 4$

- (a) Explain the pairing energy term in semi-empirical mass formula.
- (b) What is α -particle range? Write down its expression.
- (c) Calculate the kinetic energy of α -particle emitted in the following α -decay process: $^{238}U \rightarrow ^{234}Th + ^{4}He$. Given: Q-value = 4.28 MeV.
- (d) Find the type (E/M) and multi-polarity of γ -ray emitted from $\left(\frac{1}{2}^{-}\right)$ state to $\left(\frac{9}{2}^{+}\right)$ state.
- 2. Answer any two bits:

 $2 \times 4 = 8$

- (a) What is electric quadrupole moment? Explain the nuclear shape based on it. [2+2]
- (b) What is mass parabola? Draw mass parabolas for odd-A and Even-A nuclei. [2+2]
- (c) Find the expressions of Q-values for β -decays. Show that electron capture process is energetically more possible than β^+ -decay process. [3+1]
- (d) Explain the experimental set-up for measuring nuclear magnetic moment using Rabi's method. [4]
- 3. Answer any one of the following:

 $1 \times 8 = 8$

(a) (i) Discuss the correction factor in the Fermi's theory of β-decay.

- (ii) What is Kurie Plot? Write down its significance.
- (iii) 14 C decays by β emission. The end-point energy of β -particles is 0.156 MeV. The mass of 14 C is 14.007685 amu. Find the mass of the daughter nucleus.

[3+(1+1)+3=8]

- (b) (i) Discuss the Gamow's theory of α -decay.
 - (ii) Derive the emission probability of 5 MeV α -particle from a nucleus of diameter 2×10^{-14} m and height of the potential barrier of 15 MeV.
 - (iii) For isobaric family with A = 39, estimate the atomic number of the most stable nucleus

[4+2+2=8]

(All the symbols have their usual meanings)

.....

Internal Assessment-05