- (II) Find out the statement which is incorrect with reference to electronic transition
 - (i) Initial and final electronic states belong to different symmetry.
 - (ii) Initial and final electronic states belong to same symmetry.
 - (iii) Direct product of representations of the initial and final electronic states may contain totally symmetric representation.
 - (iv) Direct product of representations of the initial and final electronic states may have a representation that belongs to dipole moment operator.
- (III) Number of Microstates in f¹d¹ electronic configuration is
 - (i) 45
 - (ii) 70
 - (iii) 120
 - (iv) 140
- (IV) The UV-Vis absorption spectrum of aqueous solution of $[Ni(H_2O)_6](ClO_4)_2$ shows three main absorption bands at 385, 658 and 1175 nm. Identify 10Dq value.
 - (i) 8510 cm⁻¹
 - (ii) 15200 cm⁻¹
 - (iii) 20000 cm⁻¹
 - (iv) 26000 cm⁻¹

Internal Assessment-10

Total Pages -04

PKC/PG/IIIS/CEM-302/22

2022

M.Sc.

3rd Semester Examination CHEMISTRY

PAPER - CEM-302 (Inorganic Special)

Full Marks: 50

Time: 2 Hours

(CEM 302-Advanced Inorganic Chemistry-I)

1. Answer any *four* questions

 $2 \times 4 = 8$

- (a) What is Ziegler-Natta catalyst? Write its application.
- (b) Identify A.

- (c) Find out ground state term symbol for the electronic configuration of Co(III) (diamagnetic) in $[Co(NH_3)_6]^{3+}$.
- (d) Correct energy ordering of Ground State Functions in Oh symmetry field of d³ electronic configuration is

(i)
$${}^{3}A_{2g} < {}^{3}T_{2g} < {}^{3}T_{1g}$$

(ii)
$${}^{4}A_{2g} < {}^{4}T_{2g} < {}^{4}T_{1g}$$

(iii)
$${}^{3}A_{2g} < {}^{3}T_{1g} < {}^{3}T_{2g}$$

(iv)
$${}^{4}T_{1g} < {}^{4}T_{2g} < {}^{4}A_{2g}$$

(e) Identify D

Page-01

(Turn over)

 $(f)\ Discuss the role of Cu^{2+}ion in Wacker process.$

2. Answer any four questions

 $4 \times 4 = 16$

- (a) a) Among the following which compound will not undergo oxidative reaction with CH₃I. Explain with reason.
- i) Ir(PPh₃)₂COCl ii) RhI₂(CO)₂ iii) Cp₂TiClCH₃ iv) CpRh(CO)₂
- (b) i) Write a short note on migratory insertion reaction.
- ii) Identify C.

(c) Write the product of the following reactions.

(d)Draw a MO diagram for tetrahedral AB₄ molecule by SALC method.

(e) Establishtherelation
$$\chi(\alpha) = \frac{Sin(l+0.5)\alpha}{Sin \alpha/2}$$

50.0

(f) Draw the MO diagram for the $[Fe(H_2O)_6]^{3+}$. Identify HOMO and LUMO

3. Answer any two questions

 $2 \times 8 = 16$

(a) (i) Draw the catalytic circle of Monsanto's acetic acid synthesis.

(ii) Identify A and B.

5 + 3

(b) (i) Write the mechanism of the hydroformylation reaction. (ii) What do you mean by Agostic interaction? Illustrate with example.

5 + 3

- (c) Evaluate the genesis of Group Theoretical Notation(s) of the Ground State Term of d² electronic configuration and hence their energy ordering (if any).
- (d) (1) Write the catalytic cycle using Wilkinson's catalyst. Explain with mechanism.
- (2) Tick the correct answer.
 - (I) Intense blue colour in Prussian Blue is more correctly described as
 - (i) d-d charge transfer transition in Fe(II) and Fe(III).
 - (ii) Ligand to Metal Charge transfer transition.
 - (iii) Metal to Metal Charge Transfer Transition.
 - (iv) Intervalance Charge Transfer Transition.