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1. Introduction 
The underlying elements in vector analysis are vectors and scalars. 

A. Vectors (As directed line segments): 
There are quantities in physics and science characterized by both magnitude and direction, such as 

displacement, velocity, force, and acceleration. Pictorially, these are thus denoted as directed (with 

arrowheads) straight line segments. The direction of the arrow is 

the direction of the said quantity and the magnitude of the 

quantity is proportional to the length of the line segment.  In the 

figure on the left, the line-segment 𝐴𝐵  denotes a force of 5𝑁, and 

has a length 1𝑐𝑚. The force is from 𝐴 to 𝐵. As the line below that 

is double in length (i.e. 2 𝑐𝑚), it must denote a force of 10𝑁 in the 

same direction. 

For completeness, a Scalar is a quantity that is completely denoted by just its magnitude. Examples 

are mass, length, temperature, etc.  

To be considered as a vector, it is not enough for a quantity to have just amplitude and direction. It 

must also follow certain rules in addition. These rules are the rules of vector algebra. Hence, for a 

physical quantity to be a vector,  

1. The quantity must have a magnitude and a direction, independent of the frame of 

reference. 

2. It must follow the rules of vector algebra. 

Remember that we will always denote a vector with an arrow on top of it. 

Before writing down the rules of vector algebra, let us talk about some properties and definitions 

regarding vectors. 

B. Useful Information about vectors: 
1. Equal Vectors: Two vectors are equal only if they have equal magnitude and direction 

regardless of their initial point. 

In the first figure on the left, |𝐴| = 𝑃𝑄 =

|𝐵⃗⃗| = 𝑀𝑁 (i.e. their magnitudes are the 

same) and they have the same direction. 

Hence, they are equal. On the other hand, 

though the lengths of the vector-pairs in the 

other two figures are the same, they have 

different directions, and hence, are not 

equal. 

2. Opposite Vectors: Two vectors with the same magnitude but opposite directions are 

called opposite vectors of each other. 

Vectors 𝐴 and 𝐶 in the figure (b) above are equal in magnitude, i.e. |𝐴| = |𝐶| = 𝐸𝐹 =

𝐺𝐻, but opposite in direction. ∴ 𝐴 = −𝐶 

3. Null or Zero Vector: When the two end-points of a vector coincide, i.e. its 

length/magnitude becomes zero and it does not have a specific direction, it is called a 

null vector. 

It is represented as 0⃗⃗. Properties of null vector are: 

Figure 1 

Figure 2 
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i. 𝐴 ± 0⃗⃗ = 𝐴 

ii. 𝐴 + (−𝐴) = 0⃗⃗ 

iii. 𝑘 0⃗⃗ = 0⃗⃗, where 𝑘 is a scalar 

iv. 0 𝐴 = 0⃗⃗ 

4. Collinear Vectors: Two vectors, with either the same or opposite direction, are called 

collinear if they lie on the same line or parallel 

lines. 

In the attached figure, vectors 𝑃⃗⃗, 𝑄⃗⃗, and 𝑅⃗⃗ are 

on the same straight line, whereas 𝑋⃗, 𝑌⃗⃗, and 𝑍 

are parallel to each other. 𝑃⃗⃗, 𝑄⃗⃗, and 𝑅⃗⃗ are 

collinear and 𝑋⃗, 𝑌⃗⃗, and 𝑍 are collinear as well. 

Two collinear vectors with the same direction are called like vectors (Obviously, two like 

vectors with equal magnitude are equal vectors). In the figure, 𝑃⃗⃗ and 𝑅⃗⃗ are like vectors 

and same is true for 𝑋⃗ and 𝑌⃗⃗. 

5. Coplanar Vectors are vectors that lie in the same plane in three-dimensional space. 

6. Unit Vectors are vectors with unit length/magnitude, also known as directional vectors. 

(Unit vectors are denoted with a ‘hat’/’circumflex’ i.e. ^ sign on top of them, instead of 

an arrow.) If a vector  𝐴 has magnitude 𝐴 and 𝑎̂ is the unit vector in the direction of 𝐴, 

then 

𝑎̂ =
𝐴

𝐴
  ∴  𝐴 = 𝐴 𝑎̂ 

2. Laws of Vector Algebra: 

A. Scalar Multiplication 
In common geometrical contexts, scalar multiplication of a 

real Euclidean vector by a positive real number multiplies the 

magnitude of the vector - without changing its direction. The 

term ‘scalar’ itself derives from this usage: a scalar is that 

which scales vectors. Scalar multiplication is the multiplication 

of a vector by a scalar (where the product is a vector). If the 

scalar is negative, then the vector scales in magnitude as well 

as changes the direction to the opposite side. 

B. Laws 

1. 𝐴 + 𝐵⃗⃗ = 𝐵⃗⃗ + 𝐴   (The Commutative Law for Addition) 

2. 𝐴 + (𝐵⃗⃗ + 𝐶) = (𝐴 + 𝐵⃗⃗) + 𝐶 (The Associative Law for Addition) 

3. When 𝑚 and 𝑛 are scalars, 

i. 𝑚(𝐴 ± 𝐵⃗⃗) = 𝑚𝐴 ±𝑚𝐵⃗⃗ 

ii. (𝑚 ± 𝑛)𝐴 = 𝑚𝐴 ± 𝑛𝐴 

iii. 𝑚(𝑛𝐴) = (𝑚𝑛)𝐴 

The first two are Distributive Laws for Addition, and the last one is for Multiplication. 

As you can see, these only involve the interactions of scalars and vectors. There are other 

laws too, for vectors only. For that, we need to know the multiplication or product of 

vectors. For now, just know that there are two types of products possible for a vector: a) the 

Dot (.) or Scalar product and b) the Cross (×) or Vector product. We have Distributive laws 

for these two as well: 

Figure 4  

By Silly rabbit - enwiki, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=5088002 

Figure 3 
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iv. 𝐴. (𝐵⃗⃗ + 𝐶) = 𝐴. 𝐵⃗⃗ + 𝐴. 𝐶 

v. 𝐴 × (𝐵⃗⃗ + 𝐶) = 𝐴 × 𝐵⃗⃗ + 𝐴 × 𝐶 

For a physical quantity to be called a Vector, it must follow these properties, in addition to having 

both magnitude and direction. As an example, the electric current has both direction and magnitude 

but does not follow these laws, and hence, is a scalar, not a vector. Time too, is scalar, for the same 

reason. 

3. Vector Addition: 
As vectors have direction, adding two or more vectors is more complicated than adding their 

magnitudes. The resultant vector 𝑅⃗⃗ obtained after adding two vectors 𝑃⃗⃗ and 𝑄⃗⃗, can be found by 

applying one of the three equivalent laws of vector addition: 

A. Triangle Law:  
When two vectors of the same class are represented as two sides of 

the triangle with the order of magnitude and direction, then the third 

side of the triangle represents the magnitude and direction of the 

resultant vector. 

In the adjacent figure, 𝑃⃗⃗ and 𝑄⃗⃗ are respectively represented by two 

sides 𝑂𝐴⃗⃗⃗⃗ ⃗⃗  and 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  of the triangle 𝑂𝐴𝐵, in terms of both magnitude and 

direction. The third side 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗  then represents the resultant 𝑅⃗⃗ of these 

vectors, i.e. 𝑅⃗⃗ = 𝑃⃗⃗ + 𝑄⃗⃗. If the angle between the vectors 𝑃⃗⃗ and 𝑄⃗⃗ is 𝜃, then  

|𝑅⃗⃗| = 𝑅 = √𝑃2 + 𝑄2 + 2 𝑃𝑄 cos 𝜃 

In addition, if the angle that 𝑅⃗⃗ makes with 𝑃⃗⃗ is 𝜙, then  

tan𝜙 =
𝑄 sin𝜃

𝑃 + 𝑄 cos𝜃
 

B. Parallelogram Law:  
If two vectors of the same class, acting on the same point, are 

represented by two adjacent sides of a parallelogram, then the 

diagonal of the parallelogram through the common point 

represents the sum of the two vectors in both magnitude and 

direction. 

In the adjacent figure, 𝑃⃗⃗ and 𝑄⃗⃗ are respectively represented by 

two adjacent sides 𝑂𝐴⃗⃗⃗⃗ ⃗⃗  and 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  of the parallelogram 𝑂𝐴𝐶𝐵, in 

terms of both magnitude and direction. The diagonal 𝑂𝐶⃗⃗⃗⃗ ⃗⃗  then represents the resultant 𝑅⃗⃗ of these 

vectors, i.e. 𝑅⃗⃗ = 𝑃⃗⃗ + 𝑄⃗⃗. If the angle between the vectors 𝑃⃗⃗ and 𝑄⃗⃗ is 𝜃, then |𝑅⃗⃗| = 𝑅 =

√𝑃2 + 𝑄2 + 2 𝑃𝑄 cos 𝜃. In addition, if the angle that 𝑅⃗⃗ makes with 𝑃⃗⃗ is 𝜙, then tan𝜙 =
𝑄 sin𝜃

𝑃+𝑄 cos𝜃
 

C. Polygon Law:  
If (𝑛 − 1) number of vectors are represented by (𝑛 − 1) 

sides of a polygon in sequence, then 𝑛th side, closing the 

polygon in the opposite direction, represents the sum of 

the vectors in both magnitude and direction. 

Let’s say, 𝑎⃗, 𝑏⃗⃗, 𝑐, and 𝑑 are four coplanar vectors, 

depicted by the four sides 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ , 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , 𝐵𝐶⃗⃗⃗⃗⃗⃗ , and 𝐶𝐷⃗⃗⃗⃗ ⃗⃗  of the 

Figure 5 

Figure 6 

Figure 7 
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open polygon 𝑂𝐴𝐵𝐶𝐷, in both magnitude and direction. Then the last side of this polygon 𝑂𝐷⃗⃗⃗⃗⃗⃗⃗, taken 

in the opposite direction, expresses the resultant 𝑅⃗⃗ of these four vectors in both magnitude and 

direction. ∴  𝑅⃗⃗ = 𝑎⃗ + 𝑏⃗⃗ + 𝑐 + 𝑑 

4. Vector Multiplication 

A. Vectors in the Cartesian coordinate system 
A Cartesian coordinate system is a coordinate system that 

specifies each point uniquely by a set of numerical 

coordinates, which are the signed distances to the point 

from three fixed perpendicular oriented lines, measured in 

the same unit of length. Each reference line is called a 

coordinate axis or just axis (plural axes) of the system, and 

the point where they meet is its origin, at ordered 

pair (0, 0, 0). The coordinates can also be defined as the 

positions of the perpendicular projections of the point onto 

the three axes, expressed as signed distances from the 

origin. 

In three dimensions, a Cartesian coordinate system can be of two types, depending on their 

handedness. In the adjacent figure, the two coordinate systems are called a left-handed and a right-

handed system respectively. In all of our discussions, we will talk about a right-handed coordinate 

system.  

To remember, think of a screw which you are 

rotating from positive 𝑥 axis to positive 𝑦 axis, the 

screw will move towards the positive 𝑧 direction in 

a right-handed coordinate system. Another way of 

remembering is that if we curl the fingers of our 

right hand in the direction of a 90° rotation from 

the positive 𝑥 axis to the positive 𝑦 axis, then the 

thumb will point to the positive 𝑧 axis. 

Remember the definition of unit vectors from section 1.B.? An important set of three unit vectors, 

called 𝑖̂, 𝑗̂, and 𝑘̂ can be defined such that they represent the positive directions of the 𝑥, 𝑦, and 𝑧 

axes of a Cartesian coordinate system. Any vector 𝐴 in 

three dimensional Cartesian coordinate system can be 

represented with an initial point at the origin 𝒪 = (0, 0, 0) 

and its endpoint at some point, say, (𝐴1, 𝐴2, 𝐴3). Then the 

vectors 𝐴1𝑖,̂ 𝐴2𝑗̂, and 𝐴3𝑘̂ are called the component 

vectors and 𝐴1, 𝐴2, and 𝐴3 the components of 𝐴 in 

the 𝑥, 𝑦, and 𝑧 directions, respectively. As any vector in 3-

dimension can be expressed with the help of 𝑖,̂ 𝑗̂, and 𝑘̂, 

they are called the basis vectors of the Cartesian 

coordinate system. Hence, 𝐴 = 𝐴1𝑖̂ + 𝐴2𝑗̂ + 𝐴3𝑘̂ 

This is very useful for vector addition and scalar multiplication: 

𝐴 ± 𝐵⃗⃗ = (𝐴1 ± 𝐵1)𝑖̂ + (𝐴2 ± 𝐵2)𝑗̂ + (𝐴3 ± 𝐵3)𝑘̂  and  𝑚𝐴 = 𝑚𝐴1𝑖̂ + 𝑚𝐴2𝑗̂ + 𝑚𝐴3𝑘̂. 

Figure 9  

 CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=628183 

Figure 8  

By Jorge Stolfi - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=6692547 

Figure 10    

By Original: Jack Ver at Dutch Wikipedia Vector: Ponor - Own work based on: 
Plaatsvector.png by Jack Ver at Dutch Wikipedia (Original text: Inspired by 
Plaatsvector.png), CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=95477901 
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Using the methodology of the paragraph above, we can assign a 

vector to each point 𝑃 = (𝑥, 𝑦, 𝑧) in space with respect to the 

origin 𝑂 = (0, 0, 0)  (starting from the origin and ending on the 

point). This is called the Position Vector 𝑂𝑃⃗⃗⃗⃗ ⃗⃗ = 𝑟 of the point. 

 ∴  𝑟 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ , 

 |𝑟| = √𝑥2 + 𝑦2 + 𝑧2 

This enables us to measure the distance between two points with the help of vectors. Let’s say that 

the origin is 𝑂 and the position vectors of two points 𝑃 and 𝑄 are (𝑥1𝑖̂ + 𝑦1𝑗̂ + 𝑧1𝑘̂) and (𝑥2𝑖̂ +

𝑦2𝑗̂ + 𝑧2𝑘̂) respectively. From the adjacent figure, 𝑂𝑄⃗⃗⃗⃗⃗⃗⃗ = 𝑂𝑃⃗⃗⃗⃗ ⃗⃗ + 𝑃𝑄⃗⃗⃗⃗ ⃗⃗ ⇒  𝑃𝑄⃗⃗⃗⃗ ⃗⃗ = 𝑂𝑄⃗⃗⃗⃗⃗⃗⃗ − 𝑂𝑃⃗⃗⃗⃗ ⃗⃗  

= (𝑥2 − 𝑥1)𝑖̂ + (𝑦2 − 𝑦1)𝑗̂ + (𝑧2 − 𝑧1)𝑘̂ 

⇒ |𝑃𝑄⃗⃗⃗⃗ ⃗⃗ | = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 

Here the last line depicts the distance between the two points. 

B. Dot Product 

Suppose the magnitudes of two vectors 𝐴 and 𝐵⃗⃗ are 𝐴 and 

𝐵 and the intermediate angle is 𝜃. Then the Dot product is 

defined as 

𝐴. 𝐵⃗⃗ =  𝐴𝐵 cos𝜃 
=  𝐵𝐴 cos 𝜃 

= 𝐵𝐴 cos(−𝜃) = 𝐵⃗⃗. 𝐴 

The result on the left-hand side is a scalar. This is why it is 

also called a Scalar Product. 

Example: when force and displacement are respectively 𝐹⃗ 

and 𝑠, then the work done by the force 𝑊 = 𝐹⃗. 𝑠.  

Power=
𝑑𝑊

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐹⃗. 𝑠) = 𝐹⃗.

𝑑𝑠

𝑑𝑡
= 𝐹⃗. 𝑣⃗, where 𝑣⃗ =

𝑑𝑠

𝑑𝑡
 is the velocity. 

Let us list some rules of the dot product of vectors: 

1. 𝐴. 𝐵⃗⃗ = 𝐵⃗⃗. 𝐴       (Commutative Law) 

2. 𝐴. (𝐵⃗⃗ + 𝐶) = 𝐴. 𝐵⃗⃗ + 𝐴. 𝐶    (Distributive Law) 

3. 𝑚(𝐴. 𝐵⃗⃗) = (𝑚𝐴). 𝐵⃗⃗ = 𝐴. (𝑚𝐵⃗⃗) = (𝐴. 𝐵⃗⃗)𝑚  where 𝑚 is a scalar 

4. 𝑖.̂ 𝑖̂ = 𝑗̂. 𝑗̂ = 𝑘̂. 𝑘̂ = (1)(1) cos0° = 1 

5. 𝑖.̂ 𝑗̂ = 𝑗̂. 𝑘̂ = 𝑘̂. 𝑖̂ = (1)(1) cos90° = 0 

6. 𝐴. 𝐴 = |𝐴|
2
cos 0° = |𝐴|

2
= 𝐴2 

This directly means that the magnitude (norm) of a vector 𝐴,   𝐴 = √𝐴. 𝐴 

7. If 𝐴. 𝐵⃗⃗ = 0 and none of 𝐴 and 𝐵⃗⃗ are null vectors, then 𝐴 and 𝐵⃗⃗ are perpendicular to 

each other. They are also called orthogonal to each other. 

8. If two vectors 𝐴 and 𝐵⃗⃗ are expressed in terms of their components in a Cartesian 

coordinate system, 𝐴 = 𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂ and 𝐵⃗⃗ = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂, then 

𝐴. 𝐵⃗⃗ = (𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂). (𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂) 

= 𝐴𝑥𝐵𝑥(𝑖.̂ 𝑖)̂ + 𝐴𝑦𝐵𝑦(𝑗̂. 𝑗̂) + 𝐴𝑧𝐵𝑧(𝑘̂. 𝑘̂) 

Figure 12 Scalar Projection 
By No machine-readable author provided. Mazin07 assumed (based on copyright 
claims). - No machine-readable source provided. Own work assumed (based on 
copyright claims)., Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=3899178 

Figure 11 
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= 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧 

9. If the angle between two vectors 𝐴 and 𝐵⃗⃗, then  cos 𝜃 =
𝐴.𝐵⃗⃗

𝐴𝐵
 

10. (Check Figure 12) 

If the unit vector is in the direction of vector 𝐵⃗⃗ is 𝑏̂, then the component of the 

vector 𝐴 in that direction is 𝐴. 𝑏̂ =
𝐴.𝐵⃗⃗

𝐵
= 𝐴 cos 𝜃. So the component vector of 𝐴 in 

the direction of 𝐵⃗⃗ is 

(𝐴 cos 𝜃)𝑏̂ = (
𝐴. 𝐵⃗⃗

𝐵
)
𝐵⃗⃗

𝐵
=
(𝐴. 𝐵⃗⃗)𝐵⃗⃗

𝐵2
 

C. Direction Cosines of a Vector 
  In analytic geometry, the direction cosines (or directional cosines) of a vector are the cosines of the 

angles between the vector and the three 

coordinate axes. Equivalently, they are 

the contributions of each component of 

the basis to a unit vector in that 

direction. 

A vector 𝑉⃗⃗ = 𝑉𝑥𝑖̂ + 𝑉𝑦𝑗̂ + 𝑉𝑧𝑘̂ makes 

angles 𝑎, 𝑏, and 𝑐 with the three positive 

axes respectively. Hence the direction 

cosines are 𝛼 = cos 𝑎 , 𝛽 = cos 𝑏, 

and 𝛾 = cos 𝑐. Now, 

𝑖̂. 𝑉⃗⃗ = 𝑉 cos 𝑎 = 𝑉𝛼 

⇒ 𝑖.̂ (𝑉𝑥 𝑖̂ + 𝑉𝑦𝑗̂ + 𝑉𝑧𝑘̂) = 𝑉𝑥 = 𝑉𝛼 

⇒ 𝛼 =
𝑉𝑥

𝑉
. 

Similarly, 𝛽 =
𝑉𝑦

𝑉
, and 𝛾 =

𝑉𝑧

𝑉
.  

∴ 𝛼2 + 𝛽2 + 𝛾2 =
(𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2)

𝑉2
= 1 

The unit vector in the direction of vector 𝑉⃗⃗,  

𝑣 =
𝑉⃗⃗

𝑉
=
𝑉𝑥
𝑉
𝑖̂ +

𝑉𝑦

𝑉
𝑗̂ +

𝑉𝑧
𝑉
𝑘̂ 

⇒ 𝑣 = 𝛼𝑖̂ + 𝛽𝑗̂ + 𝛾𝑘̂ 

Figure 13 
By Maschen - Own work, CC0, 
 https://commons.wikimedia.org/ 
w/index.php?curid=26685534 
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D. Cross Product 

Two vectors 𝐴 and 𝐵⃗⃗ with magnitudes 𝐴 and 𝐵 has an angle 

𝜃 between them. The Cross Product between 𝐴 and 𝐵⃗⃗ will 

be represented as: 

𝐶 = 𝐴 × 𝐵⃗⃗ = (𝐴 𝐵 sin𝜃)𝑛̂  0 ≤ 𝜃 < 𝜋 

where 𝑛̂ is the unit vector in the direction of 𝐶. The result of 

the cross-product of two vectors is a 

vector too. This is why it is also 

called a Vector Product. The 

direction of 𝐶 is such that it is 

perpendicular to the plane 

containing 𝐴 and 𝐵⃗⃗ while 𝐴, 𝐵⃗⃗, and 

𝐶 form a right-handed system (i.e. if 

we curl the fingers of our right hand in the direction of a 90° rotation from 

the direction of 𝐴 to the direction of 𝐵⃗⃗, then the thumb will point to the 

direction of 𝐶). 

Let us list some rules of the dot product of vectors: 

1. 𝐴 × 𝐵⃗⃗ = −(𝐵⃗⃗ × 𝐴)      (Commutative Law Fails) 

2. 𝐴 × (𝐵⃗⃗ + 𝐶) = 𝐴 × 𝐵⃗⃗ + 𝐴 × 𝐶    (Distributive Law) 

3. 𝑚(𝐴 × 𝐵⃗⃗) = (𝑚𝐴) × 𝐵⃗⃗ = 𝐴 × (𝑚𝐵⃗⃗) = (𝐴 × 𝐵⃗⃗)𝑚 where 𝑚 is a scalar 

4. 𝐴 × 𝐴 = |𝐴|
2
sin0° = 0 

5. If 𝐴 × 𝐵⃗⃗ = 0 and none of 𝐴 and 𝐵⃗⃗ are null vectors, then 𝐴 and 𝐵⃗⃗ are parallel to each 

other. 

6. If 𝐴 and 𝐵⃗⃗ are perpendicular to each other, then |𝐴 × 𝐵⃗⃗| = 𝐴 𝐵. 

7. If the angle between two vectors 𝐴 and 𝐵⃗⃗, then  sin 𝜃 =
|𝐴×𝐵⃗⃗|

𝐴 𝐵
. 

8. Significance of Cross Product: The magnitude of 𝐴 × 𝐵⃗⃗ is the same as the area of a 

parallelogram with 

sides 𝐴 and 𝐵⃗⃗. 

Let’s say that 𝑎⃗ and 𝑏⃗⃗ 

are represented by 

two adjacent sides 

𝑂𝑃⃗⃗⃗⃗ ⃗⃗  and 𝑂𝑅⃗⃗⃗⃗ ⃗⃗  of a 

parallelogram 𝑂𝑃𝑄𝑅. 

Now the area of 

𝑂𝑃𝑄𝑅, from 

trigonometry, is  

∆=
1

2
 𝑂𝑃 ℎ =

1

2
(𝑂𝑃)(𝑂𝑅 sin𝜃)  [∵

ℎ

𝑂𝑅
= sin𝜃] 

=
1

2
𝑎 𝑏 sin𝜃 =

1

2
|𝑎⃗ × 𝑏⃗⃗|. 

∴ (∆)𝑚̂ =
1

2
|𝑎⃗ × 𝑏⃗⃗|𝑚̂, where 𝑚̂ is the unit vector perpendicular to the plane 

containing 𝑎⃗ and 𝑏⃗⃗. 

Figure 14  
By User:Acdx - Self-made, based on Image:Crossproduct.png, 
Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=4436304 Figure 15  

By Acdx - Self-made, based on 
Image:Right_hand_cross_product.png, 
CC BY-SA 3.0, 
https://commons.wikimedia.org/w/ind
ex.php?curid=4436743 

Figure 16  
https://web.aeromech.usyd.edu.au/statics/doc/math3.htm 
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∴ ∆⃗⃗⃗=
1

2
(𝑎⃗ × 𝑏⃗⃗)  

⇒ 𝑎⃗ × 𝑏⃗⃗ = 2∆⃗⃗⃗ = area of the parallelogram 𝑂𝑃𝑄𝑅. 

9. Cross Product in Cartesian Coordiante system: 

𝑖̂ × 𝑖̂ = 𝑗̂ × 𝑗̂ = 𝑘̂ × 𝑘̂ = (1)(1) sin 0° = 0  

𝑖̂ × 𝑗̂ = (1)(1) sin 90° = 𝑛̂ ; here 𝑛̂ is perpendicular to both 

𝑖 ̂and 𝑗̂ and its direction is determined by the right-hand 

rule. 

∴ 𝑖̂ × 𝑗̂ = 𝑘̂ and 𝑗̂ × 𝑖̂ = −𝑘̂ 

Similarly,  𝑗̂ × 𝑘̂ = 𝑖;̂   𝑘̂ × 𝑖̂ = 𝑗.̂ 

Cross product of any two vectors can be specified very 

simply in the Cartesian coordinate system. If 𝐴 = 𝐴𝑥𝑖̂ +

𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂ and 𝐵⃗⃗ = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂, then  

𝐴 × 𝐵⃗⃗ = |

𝑖̂ 𝑗̂ 𝑘̂
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

| 

= |
𝐴𝑦 𝐴𝑧
𝐵𝑦 𝐵𝑧

| 𝑖̂ + |
𝐴𝑧 𝐴𝑥
𝐵𝑧 𝐵𝑥

| 𝑗̂ + |
𝐴𝑥 𝐴𝑦
𝐵𝑥 𝐵𝑦

| 𝑘̂ 

= (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦)𝑖̂ + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧)𝑖̂ + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥)𝑘̂ 

= (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦)𝑖̂ − (𝐴𝑥𝐵𝑧 − 𝐴𝑧𝐵𝑥)𝑖̂ + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥)𝑘̂ 

E. Triple Product of Vectors 
Dot and cross multiplication of three vectors give rise to interesting products of vectors, called Triple 

Products. These are of two types: Scalar Triple Product and Vector Triple Product. 

When the multiplication of three vectors gives rise to a scalar quantity, it is called a scalar triple 

product. Example: 𝐴. (𝐵⃗⃗ × 𝐶). 

Let’s say the three vectors are expressed in terms of their Cartesian components: 𝐴 = 𝐴𝑥 𝑖̂ + 𝐴𝑦𝑗̂ +

𝐴𝑧𝑘̂, 𝐵⃗⃗ = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂, and 𝐶 = 𝐶𝑥𝑖̂ + 𝐶𝑦𝑗̂ + 𝐶𝑧𝑘̂. 

𝐵⃗⃗ × 𝐶 = |

𝑖̂ 𝑗̂ 𝑘̂
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧

| = (𝐵𝑦𝐶𝑧 − 𝐵𝑧𝐶𝑦)𝑖̂ + (𝐵𝑧𝐶𝑥 −𝐵𝑥𝐶𝑧)𝑖̂ + (𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥)𝑘̂ 

∴ 𝐴. (𝐵⃗⃗ × 𝐶) = (𝐴𝑥 𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂). {(𝐵𝑦𝐶𝑧 − 𝐵𝑧𝐶𝑦)𝑖̂ + (𝐵𝑧𝐶𝑥 − 𝐵𝑥𝐶𝑧)𝑖̂ + (𝐵𝑥𝐶𝑦 − 𝐵𝑦𝐶𝑥)𝑘̂} 

= 𝐴𝑥(𝐵𝑦𝐶𝑧 − 𝐵𝑧𝐶𝑦) + 𝐴𝑦(𝐵𝑧𝐶𝑥 − 𝐵𝑥𝐶𝑧) + 𝐴𝑧(𝐵𝑥𝐶𝑦 −𝐵𝑦𝐶𝑥) 

= |

𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧

| = − |

𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧

|         [following the rules of Determinant] 

= |

𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

| = 𝐵⃗⃗. (𝐶 × 𝐴) 

= − |

𝐶𝑥 𝐶𝑦 𝐶𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

| 

= |

𝐶𝑥 𝐶𝑦 𝐶𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

| = 𝐶. (𝐴 × 𝐵⃗⃗) 

 

∴ 𝐴. (𝐵⃗⃗ × 𝐶) = 𝐵⃗⃗. (𝐶 × 𝐴) = 𝐶. (𝐴 × 𝐵⃗⃗)  

Figure 17 
By Cmglee - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=93694405 
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The Geometric Significance of the scalar triple product: The scalar triple product denotes the volume 

of a parallelepiped if three adjacent edges of it represent the three vectors. 

Let’s say 𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ , 𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗, and 𝑂𝑅⃗⃗⃗⃗ ⃗⃗  represents the three vectors 𝐵⃗⃗, 

𝐶, and 𝐴 both in magnitude and direction. As we have 

learned earlier, the area of the base (enclosed by 𝐵⃗⃗ and 𝐶) 

of the parallelepiped is 𝐵⃗⃗ × 𝐶, where the direction of it is 

perpendicular to the plane containing 𝐵⃗⃗ and 𝐶, i.e. the 

base and is denoted by the unit vector 𝑛̂. Say the angle 

that 𝑛̂ makes with 𝐴 is 𝛼. If the height of the 

parallelepiped is ℎ, then 
ℎ

𝐴
= cos𝛼 

⇒ ℎ = 𝐴 cos𝛼 
 ∴ the volume of the parallelepiped is  

𝑉 = ℎ|𝐵⃗⃗ × 𝐶| = 𝐴 |𝐵⃗⃗ × 𝐶| cos 𝛼 = 𝐴. (𝐵⃗⃗ × 𝐶) 

Corollary: If 𝐴. (𝐵⃗⃗ × 𝐶) = 0, and none of the vectors are null, then the volume of the parallelepiped 

made by them is zero, i.e. the three vectors are coplanar. 

Vector triple products are of two types. For three vectors 𝐴, 𝐵⃗⃗, and 𝐶, these are respectively (𝐴. 𝐵⃗⃗)𝐶 

and 𝐴 × (𝐵⃗⃗ × 𝐶). 

In general, (𝐴. 𝐵⃗⃗)𝐶 ≠ 𝐴(𝐵⃗⃗. 𝐶) and 𝐴 × (𝐵⃗⃗ × 𝐶) ≠ (𝐴 × 𝐵⃗⃗) × 𝐶 

 

𝐴 × (𝐵⃗⃗ × 𝐶) = (𝐴. 𝐶)𝐵⃗⃗ − (𝐴. 𝐵⃗⃗)𝐶 

(𝐴 × 𝐵⃗⃗) × 𝐶 = (𝐴. 𝐶)𝐵⃗⃗ − (𝐵⃗⃗. 𝐶)𝐴 

5. Solved Questions 
1. If 𝑨⃗⃗⃗ = 𝒊̂ − 𝟐𝒋̂ + 𝟑𝒌̂, and 𝑩⃗⃗⃗ = 𝟐𝒊̂ + 𝟓𝒋̂ − 𝟐𝒌̂, then determine the magnitude and direction 

of 𝑨⃗⃗⃗⃗ + 𝑩⃗⃗⃗. 

Answer: If resultant of 𝐴 and 𝐵⃗⃗ is 𝑅⃗⃗, then  

𝑅⃗⃗ = 𝐴 + 𝐵⃗⃗ = (𝑖̂ − 2𝑗̂ + 3𝑘̂) + (2𝑖̂ + 5𝑗̂ − 2𝑘̂) = 3𝑖̂ + 3𝑗̂ + 𝑘̂. 

∴ The norm of 𝑅⃗⃗, 𝑅 = √32 + 32 + 12 = √19. 

The unit vector in the direction of 𝑅⃗⃗ is, 

𝑅̂ =
𝑅⃗⃗

𝑅
=
3𝑖̂ + 3𝑗̂ + 𝑘̂

√19
=

3

√19
𝑖̂ +

3

√19
𝑗̂ +

1

√19
𝑘̂ 

2. The magnitudes of three vectors in some arbitrary unit are 𝟐, 𝟑, and 𝟔, respectively. Do 

they satisfy the Triangle Law of vector addition? Justify. 

Answer: No, these vectors do not satisfy the Triangle law of vector addition, as they do not 

constitute a triangle. We know that the sum of any two sides of a triangle is larger than the 

third. As 2 + 3 < 6, the three supplied vectors do not form a triangle. 

Figure 18 
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3. Prove the polygon rule of vector addition from the triangle law of vector addition. 

Answer: (Refer to Figure 7) 

Let’s join 𝑂𝐵 and 𝑂𝐶. Now 𝑂𝐴⃗⃗⃗⃗ ⃗⃗  and 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  two sequential 

vectors of the triangle ∆𝑂𝐴𝐵. Hence, following the triangle 

law of addition, 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .  

Similarly, 𝑂𝐶⃗⃗⃗⃗ ⃗⃗ = 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ + 𝐵𝐶⃗⃗⃗⃗⃗⃗ = 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐵𝐶⃗⃗⃗⃗⃗⃗ . 

Again, 𝑂𝐷⃗⃗⃗⃗⃗⃗⃗ = 𝑂𝐶⃗⃗⃗⃗ ⃗⃗ + 𝐶𝐷⃗⃗⃗⃗ ⃗⃗ = 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐵𝐶⃗⃗⃗⃗⃗⃗ + 𝐶𝐷⃗⃗⃗⃗ ⃗⃗ , from the 

triangle ∆𝑂𝐶𝐷. 

∴  𝑅⃗⃗ = 𝑎⃗ + 𝑏⃗⃗ + 𝑐 + 𝑑 (QED) 

4. 𝑨⃗⃗⃗ = 𝟐𝒊̂ − 𝟐𝒋̂ + 𝒌̂ and 𝑩⃗⃗⃗ = 𝒊̂ + 𝟐𝒋̂ + 𝟑𝒌̂. Find the component 

of 𝑩⃗⃗⃗ in the direction of 𝑨⃗⃗⃗. 

Answer: The component of 𝐵⃗⃗ in the direction of 𝐴 is 

𝐵⃗⃗. 𝑎̂ =
𝐵⃗⃗. 𝐴

𝐴
=
(𝑖̂ + 2𝑗̂ + 3𝑘̂). (2𝑖̂ − 2𝑗̂ + 𝑘̂)

√22 + 22 + 1
=
2 − 4 + 3

3
=
1

3
 

5. If vectors 𝑨⃗⃗⃗ = 𝟑𝒊̂ + 𝟒𝒋̂ + 𝟓𝒌̂ and 𝑩⃗⃗⃗ = 𝒑𝒊̂ − 𝟑𝒋̂ + 𝟑𝒌̂ are orthogonal/perpendicular to each 

other, then what is the value of 𝒑? 

Answer: 𝐴 and 𝐵⃗⃗ are perpendicular to each other if 𝐴. 𝐵⃗⃗ = 0. 

∴ (3𝑖̂ + 4𝑗̂ + 5𝑘̂). (𝑝𝑖̂ − 3𝑗̂ + 3𝑘̂) = 0 

⇒ 3𝑝 − 12 + 15 = 0 

⇒ 3𝑝 = −3 

⇒ 𝑝 = −1 

6. If 𝑨⃗⃗⃗ = 𝟑𝒊̂ + 𝟓𝒋̂ − 𝟐𝒌̂ and 𝑩⃗⃗⃗ = 𝟓𝒊̂ − 𝟐𝒋,̂ then find the projection of 𝑨⃗⃗⃗ on 𝑩⃗⃗⃗. [VU 2018] 

Answer: If 𝑏̂ is the unit vector in the direction of 𝐵⃗⃗, then the projection of 𝐴 in that direction, 

𝐴. 𝑏̂ = (3𝑖̂ + 5𝑗̂ − 2𝑘̂).
(5 𝑖̂ − 2 𝑗̂)

√52 + 22
 

=
15 − 10

√29
=

5

√29
 

7. Find the direction cosines of the vector 𝑨⃗⃗⃗ = 𝒊̂ + 𝟐𝒋̂ + 𝟐𝒌̂. 

Answer:  Here, the components of the vector are 𝐴𝑥 = 1, 𝐴𝑦 = 2, and 𝐴𝑧 = 2. So the norm 

of the vector, 𝐴 = √𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2 = √1 + 4 + 4 = 3. Hence, the direction cosines are,  

(
1

3
,
2

3
,
2

3
) 

8. The norm/magnitude of a vector is 5 and the direction cosines are respectively 
𝟏

𝟐
,
𝟏

√𝟐
, and 

𝟏

𝟐
 

(in some arbitrary unit). Find the vector. 

Answer:  

𝐴 = 5. The direction cosines, 

(𝛼, 𝛽, 𝛾) = (
𝐴𝑥
𝐴
,
𝐴𝑦

𝐴
,
𝐴𝑧
𝐴
) = (

1

2
,
1

√2
,
1

2
) 

⇒ (𝐴𝑥 , 𝐴𝑦, 𝐴𝑧) = (
5

2
,
5

√2
,
5

2
) 

Hence, the vector 𝐴 =
5

2
𝑖̂ +

5

√2
𝑗̂ +

5

2
𝑘̂. 

9. Show that the diagonals of a parallelogram bisect each other. 

Answer: 

𝑃𝑅⃗⃗⃗⃗⃗⃗  and 𝑄𝑆⃗⃗⃗⃗⃗⃗ , diagonals of a parallelogram 𝑃𝑄𝑅𝑆, cross each other at the point 𝑂. Let’s say 

Figure 19 
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𝑃𝑂⃗⃗⃗⃗ ⃗⃗ = 𝑚 𝑃𝑅⃗⃗⃗⃗⃗⃗  and 𝑄𝑂⃗⃗⃗⃗⃗⃗⃗ = 𝑛 𝑄𝑆⃗⃗⃗⃗⃗⃗ . Now, using the law of vector addition, we can write, 

𝑃𝑄⃗⃗⃗⃗ ⃗⃗ + 𝑄𝑆⃗⃗⃗⃗⃗⃗ = 𝑃𝑆⃗⃗ ⃗⃗ ⃗ 

∴ 𝑄𝑆⃗⃗⃗⃗⃗⃗ = 𝑃𝑆⃗⃗ ⃗⃗ ⃗ − 𝑃𝑄⃗⃗⃗⃗ ⃗⃗ = 𝑏⃗⃗ − 𝑎⃗ 

∴ 𝑄𝑂⃗⃗⃗⃗⃗⃗⃗ = 𝑛 𝑄𝑆⃗⃗⃗⃗⃗⃗ = 𝑛(𝑏⃗⃗ − 𝑎⃗) 

On the other hand, 

𝑃𝑆⃗⃗ ⃗⃗ ⃗ + 𝑆𝑅⃗⃗⃗⃗⃗⃗ = 𝑃𝑅⃗⃗⃗⃗⃗⃗  and 𝑃𝑅⃗⃗⃗⃗⃗⃗ = 𝑏⃗⃗ + 𝑎⃗ 

∴ 𝑃𝑂⃗⃗⃗⃗ ⃗⃗ = 𝑚 𝑃𝑅⃗⃗⃗⃗⃗⃗ = 𝑚(𝑏⃗⃗ + 𝑎⃗) 

We can write 𝑃𝑄⃗⃗⃗⃗ ⃗⃗ + 𝑄𝑂⃗⃗⃗⃗⃗⃗⃗ = 𝑃𝑂⃗⃗⃗⃗ ⃗⃗  for the triangle ∆𝑃𝑄𝑂. 

∴ 𝑃𝑄⃗⃗⃗⃗ ⃗⃗ = 𝑃𝑂⃗⃗⃗⃗ ⃗⃗ − 𝑄𝑂⃗⃗⃗⃗⃗⃗⃗ = 𝑚(𝑏⃗⃗ + 𝑎⃗) − 𝑛(𝑏⃗⃗ − 𝑎⃗) 

⇒ 𝑎⃗ = (𝑚 − 𝑛)𝑏⃗⃗ + (𝑚 + 𝑛)𝑎⃗ 

As 𝑎⃗ and 𝑏⃗⃗ do not lie on the same straight line, this is only true when 

(𝑚 − 𝑛) = 0 ⇒ 𝑚 = 𝑛 and (𝑚 + 𝑛) = 1 

∴ 𝑚 = 𝑛 =
1

2
 

Hence, diagonals of a parallelogram bisect each other. (QED) 

10. If 𝑨⃗⃗⃗ = 𝟑 𝒊̂ − 𝟐 𝒋̂ + 𝒌̂ and 𝑨⃗⃗⃗ = 𝟑 𝒊̂ − 𝟐 𝒋̂ + 𝒌̂, then find the angle between them.  

       [CU 2016, 2011,  BU 2016] 

Answer: 

We know that 𝐴. 𝐵⃗⃗ = 𝐴 𝐵 cos𝜃. 

∴ cos 𝜃 =
𝐴. 𝐵⃗⃗

𝐴 𝐵
 

Now, 𝐴. 𝐵⃗⃗ = (3𝑖̂ + 2𝑗̂ − 6𝑘̂). (4𝑖̂ − 3𝑗̂ + 𝑘̂) = 12 − 6 − 6 = 0 

⇒ cos𝜃 = 0 ⇒ 𝜃 =
𝜋

2
 

The angle between the vectors is 90° i.e. those vectors are perpendicular to each other. 

11. For what value of 𝒙 are the two vectors 𝑨⃗⃗⃗ = 𝒊̂ + 𝒙𝒋̂ + 𝒌̂ and 𝑩⃗⃗⃗ = 𝟑𝒊̂ − 𝟐𝒋̂ − 𝟐𝒌̂ 

perpendicular to each other?       [CU 2015, 2013] 

Answer: 

The condition for 𝐴 and 𝐵⃗⃗ to be perpendicular is 𝐴. 𝐵⃗⃗ = 0. 

⇒ (𝑖̂ + 𝑥𝑗̂ + 𝑘̂). (3𝑖̂ − 2𝑗̂ − 2𝑘̂) = 0 

⇒ 3 − 2𝑥 − 2 = 0 

⇒ 𝑥 =
1

2
 

12. Find the unit vector in the direction of the vector 𝑨⃗⃗⃗ = 𝟑𝒊̂ + 𝟒𝒋̂ + 𝒌̂.   [CU 2014] 

Answer: 

𝐴 = 3𝑖̂ + 4𝑗̂ + 𝑘̂ 

⇒ |𝐴| = √32 + 42 + 12 = √26 

Hence, the unit vector in the direction of 𝐴: 

𝑎̂ =
𝐴

|𝐴|
=
3𝑖̂ + 4𝑗̂ + 𝑘̂

√26
 

13. If |𝑨⃗⃗⃗ + 𝑩⃗⃗⃗| = |𝑨⃗⃗⃗ − 𝑩⃗⃗⃗|, then prove that 𝑨⃗⃗⃗ and 𝑩⃗⃗⃗ are perpendicular to each other.  

         [CU 2012, BU 2017] 

Answer: 

|𝐴 + 𝐵⃗⃗| = |𝐴 − 𝐵⃗⃗| 

⇒ 𝐴2 + 𝐵2 + 2𝐴𝐵 cos 𝜃 = 𝐴2 + 𝐵2 − 2𝐴𝐵 cos 𝜃 
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⇒ cos𝜃 = 0 ⇒ 𝜃 = 90° 

14. If 𝑨⃗⃗⃗ is a vector with constant magnitude, then prove that 
𝒅𝑨⃗⃗⃗

𝒅𝒕
 and 𝑨⃗⃗⃗ are perpendicular to 

each other.          [CU 2011] 

Answer: 

𝐴 is a vector with constant magnitude, i.e. |𝐴| =constant.⇒
𝑑

𝑑𝑡
|𝐴| = 0 

𝐴. 𝐴 = |𝐴|
2

 

⇒ 2𝐴.
𝑑𝐴

𝑑𝑡
= 2|𝐴|

𝑑

𝑑𝑡
|𝐴|      [Differentiating with respect to 𝑡] 

⇒ 𝐴.
𝑑𝐴

𝑑𝑡
= 0                          [∵

𝑑

𝑑𝑡
|𝐴| = 0] 

∴
𝑑

𝑑𝑡
|𝐴| and 𝐴 are perpendicular to each other. 

15. Show that 𝑪𝟐 = 𝑨𝟐 +𝑩𝟐 − 𝟐𝑨𝑩 𝒄𝒐𝒔𝜽 for a triangle.     [VU 2018] 

Answer: 

From the adjacent figure,  

𝐶2 = 𝐶. 𝐶 

⇒ 𝐶2 = (𝐴 − 𝐵⃗⃗). (𝐴 − 𝐵⃗⃗) 

= 𝐴2 + 𝐵2 − 2𝐴. 𝐵⃗⃗ 

= 𝐴2 + 𝐵2 − 2 𝐴 𝐵 cos 𝜃 

16. If 𝑨⃗⃗⃗ × 𝑩⃗⃗⃗ + 𝑩⃗⃗⃗ × 𝑪⃗⃗⃗ + 𝑪⃗⃗⃗ × 𝑨⃗⃗⃗ = 𝟎, then determine whether the three vectors are coplanar or 

not. 

Answer: 

𝐴 × 𝐵⃗⃗ + 𝐵⃗⃗ × 𝐶 + 𝐶 × 𝐴 = 0 

⇒ 𝐴. (𝐴 × 𝐵⃗⃗ + 𝐵⃗⃗ × 𝐶 + 𝐶 × 𝐴) = 0 

⇒ 𝐴. (𝐴 × 𝐵⃗⃗) + 𝐴. (𝐵⃗⃗ × 𝐶) + 𝐴. (𝐶 × 𝐴) = 0 

Now, both (𝐴 × 𝐵⃗⃗) and (𝐶 × 𝐴) are perpendicular to 𝐴. 

∴ 𝐴. (𝐴 × 𝐵⃗⃗) = 𝐴. (𝐶 × 𝐴) = 0 

⇒ 𝐴. (𝐵⃗⃗ × 𝐶) = 0 

Hence, the three vectors are coplanar. 

17. Three vectors are: 𝑨⃗⃗⃗ = 𝟑 𝒊̂ − 𝟐 𝒋̂ +  𝒌̂, 𝑩⃗⃗⃗ = 𝒊̂ + 𝒋̂ − 𝟐 𝒌̂, and 𝑪⃗⃗⃗ = 𝟑 𝒊̂ − 𝟒 𝒋̂ + 𝝀 𝒌̂. What is 

the value of 𝝀 so that the three vectors are coplanar? 

Answer: The relation that ensures that 𝐴, 𝐵⃗⃗, and 𝐶 are coplanar is 𝐴. (𝐵⃗⃗ × 𝐶) = 0 

𝐴. (𝐵⃗⃗ × 𝐶) = |
3 −2 1
1 1 −2
3 −4 𝜆

| = 3(𝜆 − 8) + 2(𝜆 + 6) + 1(−4 − 3) 

= 3𝜆 − 24 + 2𝜆 + 12 − 7 = 5𝜆 − 19 

Hence for the vectors to be coplanar, 𝜆 =
19

5
. 

18. Show that (𝝎⃗⃗⃗⃗ × 𝒓⃗⃗)𝟐 = 𝝎⃗⃗⃗⃗. {𝒓⃗⃗ × (𝝎⃗⃗⃗⃗ × 𝒓⃗⃗)} 

Answer: 

(𝜔⃗⃗⃗ × 𝑟)2 = (𝜔⃗⃗⃗ × 𝑟). (𝜔⃗⃗⃗ × 𝑟)  

= 𝜔⃗⃗⃗. {𝑟 × (𝜔⃗⃗⃗ × 𝑟)}   [∵ 𝐴. (𝐵⃗⃗ × 𝐶) = 𝐵⃗⃗. (𝐶 × 𝐴)] 

19. 𝑨⃗⃗⃗ = 𝟐 𝒊̂ − 𝟐 𝒋̂ +  𝒌̂ and 𝑩⃗⃗⃗ = 𝒊̂ + 𝟐 𝒋̂ + 𝟑 𝒌̂. Find the component of 𝑩⃗⃗⃗ in the direction of 𝑨⃗⃗⃗. 

Answer: 

The unit vector in the direction of 𝐴 is 𝑎̂ =
𝐴

|𝐴|
=

(2 𝑖̂−2 𝑗̂+ 𝑘̂)

√4+4+1
=

2

3
 𝑖̂ −

2

3
 𝑗̂ +

1

3
 𝑘̂. 
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∴ the component of 𝐵⃗⃗ in the direction of 𝐴 = 𝐵⃗⃗. 𝑎̂ = ( 𝑖̂ + 2 𝑗̂ + 3 𝑘̂). (
2

3
 𝑖̂ −

2

3
 𝑗̂ +

1

3
 𝑘̂) 

=
(2−4+3)

3
=

1

3
. 

20. 𝑨⃗⃗⃗ = 𝒊̂ + 𝟐 𝒋̂ + 𝟑 𝒌̂ and 𝑩⃗⃗⃗ = 𝟐𝒊̂ − 𝒋̂ + 𝟐 𝒌̂. Find the unit vector perpendicular to both 𝑨⃗⃗⃗ 

and  𝑩⃗⃗⃗. 

Answer: 

We know that the (𝐴 × 𝐵⃗⃗) vector is perpendicular to both 𝐴 and 𝐵⃗⃗. Hence the unit vector in 

that direction is 

𝑛̂ = ±
(𝐴 × 𝐵⃗⃗)

|𝐴 × 𝐵⃗⃗|
 

Now, 𝐴 × 𝐵⃗⃗ = |
𝑖̂ 𝑗̂ 𝑘̂
1 2 3
2 −1 2

| = 𝑖(̂4 + 3) − 𝑗̂(2 − 6) − 𝑘̂(−1 − 4) = 7𝑖̂ + 4𝑗̂ − 5𝑘̂. 

∴ 𝑛̂ = ±
(7𝑖̂ + 4𝑗̂ − 5𝑘̂)

√49 + 16 + 25
= ±

(7𝑖̂ + 4𝑗̂ − 5𝑘̂)

√90
 

21. Show that the vectors 𝑨⃗⃗⃗ = 𝒊̂ − 𝟐 𝒋̂ + 𝒌̂ and 𝑩⃗⃗⃗ = −𝟐𝒊̂ + 𝟒𝒋̂ − 𝟐𝒌̂ are parallel to each other. 

Answer: 

𝐴 × 𝐵⃗⃗ = |
𝑖̂ 𝑗̂ 𝑘̂
1 −2 1
−2 4 −2

| = 𝑖(̂4 − 4) − 𝑗̂(−2 + 2) − 𝑘̂(4 − 4) = 0⃗⃗ 

Hence they are parallel. 

22. Show that 𝑨⃗⃗⃗ × (𝑩⃗⃗⃗ × 𝑪⃗⃗⃗) + 𝑩⃗⃗⃗ × (𝑪⃗⃗⃗ × 𝑨⃗⃗⃗) + 𝑪⃗⃗⃗ × (𝑨⃗⃗⃗ × 𝑩⃗⃗⃗) = 𝟎⃗⃗⃗.  [CU 2003, BU 2017] 

Answer: 

Following the vector triple product result, 

𝐴 × (𝐵⃗⃗ × 𝐶) = 𝐵⃗⃗(𝐴. 𝐶) − 𝐶(𝐴. 𝐵⃗⃗) , 

⇒ 𝐴 × (𝐵⃗⃗ × 𝐶) + 𝐵⃗⃗ × (𝐶 × 𝐴) + 𝐶 × (𝐴 × 𝐵⃗⃗) 

= 𝐵⃗⃗(𝐴. 𝐶) − 𝐶(𝐴. 𝐵⃗⃗) + 𝐶(𝐵⃗⃗. 𝐴) − 𝐴(𝐵⃗⃗. 𝐶) + 𝐴(𝐶. 𝐵⃗⃗) − 𝐵⃗⃗(𝐶. 𝐴) 

= 0 

23. It is given that 𝑨⃗⃗⃗ + 𝑩⃗⃗⃗ + 𝑪⃗⃗⃗ = 𝟎. Show that 𝑨⃗⃗⃗ × 𝑩⃗⃗⃗ = 𝑩⃗⃗⃗ × 𝑪⃗⃗⃗ = 𝑪⃗⃗⃗ × 𝑨⃗⃗⃗  [VU 2018] 

Answer: 

𝐴 + 𝐵⃗⃗ + 𝐶 = 0 ⇒ 𝐴 + 𝐵⃗⃗ = −𝐶 

⇒ 𝐶 × (𝐴 + 𝐵⃗⃗) = −𝐶 × 𝐶 = 0 

⇒ 𝐶 × 𝐴 + 𝐶 × 𝐵⃗⃗ = 0 

⇒ 𝐶 × 𝐴 = −𝐶 × 𝐵⃗⃗ = 𝐵⃗⃗ × 𝐶 

Similarly, 

𝐴 + 𝐵⃗⃗ + 𝐶 = 0 ⇒ 𝐴 + 𝐶 = −𝐵⃗⃗ 

⇒ 𝐴 × (𝐴 + 𝐶) = −𝐴 × 𝐵⃗⃗ 

⇒ 𝐴 × 𝐴 + 𝐴 × 𝐶 = −𝐴 × 𝐵⃗⃗ 

⇒ 𝐶 × 𝐴 = 𝐴 × 𝐵⃗⃗                             [∵ 𝐴 × 𝐴 = 0] 

∴ 𝐴 × 𝐵⃗⃗ = 𝐵⃗⃗ × 𝐶 = 𝐶 × 𝐴 (QED) 

24. Using vector algebra, show that 
𝒂

𝐬𝐢𝐧𝑨
=

𝒃

𝐬𝐢𝐧𝑩
=

𝒄

𝐬𝐢𝐧𝑪
 .    [CU 2018] 

Answer: 

For the triangle in figure 19, the angle between 𝑎⃗ and 𝑐 is 𝐵, between 𝑏⃗⃗ and 𝑐 is 𝐴, and 

between 𝑎⃗ and 𝑏⃗⃗ is (𝜋 − 𝐶). For the same figure,  

𝑎⃗ + 𝑏⃗⃗ = 𝑐  
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⇒ 𝑏⃗⃗ × (𝑎⃗ + 𝑏⃗⃗) = 𝑏⃗⃗ × 𝑐  

⇒ 𝑏⃗⃗ × 𝑎⃗ = 𝑏⃗⃗ × 𝑐   [∵ 𝑏⃗⃗ × 𝑏⃗⃗ = 0] 

⇒ 𝑏 𝑎 sin(𝜋 − 𝐶) = 𝑏 𝑐 sin𝐴  

⇒ 𝑎 sin𝐶 = 𝑐 sin𝐴  

⇒
𝑎

sin𝐴
=

𝑐

sin𝐶
 

Similarly, we can prove 
𝑏

sin𝐵
=

𝑐

sin𝐶
 , starting from 𝑎⃗ × (𝑎⃗ + 𝑏⃗⃗) = 𝑎⃗ × 𝑐 . Hence, 

𝑎

sin𝐴
=

𝑏

sin𝐵
=

𝑐

sin𝐶
 

25. (𝑨⃗⃗⃗ + 𝑩⃗⃗⃗). {(𝑩⃗⃗⃗ + 𝑪⃗⃗⃗) × (𝑪⃗⃗⃗ + 𝑨⃗⃗⃗)} = ? 

Answer: 

(𝐵⃗⃗ + 𝐶) × (𝐶 + 𝐴) = (𝐵⃗⃗ × 𝐶) + (𝐵⃗⃗ × 𝐴) + (𝐶 × 𝐴)   [∵ 𝐶 × 𝐶 = 0] 

∴ (𝐴 + 𝐵⃗⃗). {(𝐵⃗⃗ + 𝐶) × (𝐶 + 𝐴)} = (𝐴 + 𝐵⃗⃗). {(𝐵⃗⃗ × 𝐶) + (𝐵⃗⃗ × 𝐴) + (𝐶 × 𝐴)} 

= 𝐴. (𝐵⃗⃗ × 𝐶) + 𝐴. (𝐵⃗⃗ × 𝐴) + 𝐴. (𝐶 × 𝐴) + 𝐵⃗⃗. (𝐵⃗⃗ × 𝐶) + 𝐵⃗⃗. (𝐵⃗⃗ × 𝐴) + 𝐵⃗⃗. (𝐶 × 𝐴) 

= 𝐴. (𝐵⃗⃗ × 𝐶) + 𝐵⃗⃗. (𝐶 × 𝐴)      [∵ 𝐴. (𝐵⃗⃗ × 𝐴) = 𝐴. (𝐶 × 𝐴) = 𝐵⃗⃗. (𝐵⃗⃗ × 𝐶) = 𝐵⃗⃗. (𝐵⃗⃗ × 𝐴) = 0] 

= 2𝐴. (𝐵⃗⃗ × 𝐶)                             [∵ 𝐵⃗⃗. (𝐶 × 𝐴) = 𝐴. (𝐵⃗⃗ × 𝐶)] 

26. It is given that 𝒓⃗⃗ × 𝒃⃗⃗⃗ = 𝒄⃗⃗ × 𝒃⃗⃗⃗ and 𝒓⃗⃗. 𝒂⃗⃗⃗ = 𝟎; 𝒂⃗⃗⃗. 𝒃⃗⃗⃗ ≠ 𝟎. Find out 𝒓⃗⃗ in terms of 𝒂⃗⃗⃗, 𝒃⃗⃗⃗, and 𝒄⃗⃗. 

Answer: 

It’s given that, 𝑟 × 𝑏⃗⃗ = 𝑐 × 𝑏⃗⃗ 

⇒ 𝑎⃗ × (𝑟 × 𝑏⃗⃗) = 𝑎⃗ × (𝑐 × 𝑏⃗⃗) 

⇒ 𝑟(𝑎⃗. 𝑏⃗⃗) − 𝑏⃗⃗(𝑎⃗. 𝑟) = 𝑎⃗ × (𝑐 × 𝑏⃗⃗) 

⇒ 𝑟(𝑎⃗. 𝑏⃗⃗) = 𝑎⃗ × (𝑐 × 𝑏⃗⃗)     [∵ (𝑟. 𝑎⃗) = 0] 

⇒ 𝑟 =
𝑎⃗ × (𝑐 × 𝑏⃗⃗)

(𝑎⃗. 𝑏⃗⃗)
 

27. A rigid body is rotating with 5 unit angular velocity around an axis parallel to the vector 

(𝟒𝒋̂ − 𝟐𝒌̂). The axis passes through the point (𝒊̂ + 𝟐𝒋̂ − 𝟑𝒌̂). What would be the velocity of 

a particle on the rigid body at the point (𝟑𝒊̂ − 𝟐𝒋̂ + 𝒌̂)?    [BU] 

Answer: 

Angular velocity |𝜔⃗⃗⃗| = 5 units. Unit vector in the direction of the rotation axis: 

𝑛̂ =
4𝑗̂ − 3𝑘̂

√16 + 9
=
1

5
(4𝑗̂ − 3𝑘̂) 

∴ 𝜔⃗⃗⃗ = 𝜔𝑛̂ = 4𝑗̂ − 3𝑘̂ 

Now the direction vector from (𝑖̂ + 2𝑗̂ − 3𝑘̂) to (3𝑖̂ − 2𝑗̂ + 𝑘̂) is: 

𝑟 = (3𝑖̂ − 2𝑗̂ + 𝑘̂) − (𝑖̂ + 2𝑗̂ − 3𝑘̂) = (2𝑖̂ − 4𝑗̂ + 4𝑘̂) 

Hence, the velocity of the particle at (3𝑖̂ − 2𝑗̂ + 𝑘̂) is: 

 𝑣⃗ = 𝜔⃗⃗⃗ × 𝑟 = |
𝑖̂ 𝑗̂ 𝑘̂
0 4 −3
2 −4 4

| = 4𝑖̂ − 6𝑗̂ + 8𝑘̂ units. 

28. The force 𝑭⃗⃗⃗ = 𝟑𝒊̂ − 𝟐𝒋̂ − 𝟒𝒌̂, acts on the point (𝟏, −𝟏, 𝟐). Find the moment of the force 

with respect to the point (𝟐, −𝟏, 𝟑).      [VU 2018] 

Answer: 

Let’s say the vector from the point 𝐴 = (2,−1,3) to the point 𝐵 = (1,−1,2) is 

𝑟 = (𝑖̂ − 𝑗̂ + 2𝑘̂) − (2𝑖̂ − 𝑗̂ + 3𝑘̂) = −𝑖̂ − 𝑘̂. 
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The moment 𝜏 = (𝑟 × 𝐹⃗) = |
𝑖̂ 𝑗̂ 𝑘̂
−1 0 −1
3 −2 −4

| = −2𝑖̂ − 7𝑗̂ + 2𝑘̂ 

∴ |𝜏| = √(−2)2 + (−7)2 + 22 = √57 units. 

29. Find the unit vector (𝒏̂) in the direction perpendicular to the plane containing the 

vectors 𝑨⃗⃗⃗ = 𝟑𝒊̂ − 𝟐𝒋̂ + 𝟒𝒌̂ and 𝑩⃗⃗⃗ = 𝒊̂ + 𝒋̂ − 𝟐𝒌̂.     [VU 2018] 

Answer: 

𝑛⃗⃗ = ±
𝐴 × 𝐵⃗⃗

|𝐴 × 𝐵⃗⃗|
 

∴ 𝐴 × 𝐵⃗⃗ = |
𝑖̂ 𝑗̂ 𝑘̂
3 −2 4
1 1 −2

| = 10𝑗̂ + 5𝑘̂ ⇒ |𝐴 × 𝐵⃗⃗| = √102 + 52 = 5√5  

∴ 𝑛⃗⃗ = ±
1

5√5
(10𝑗̂ + 5𝑘̂) = ±

1

√5
(2𝑗̂ + 𝑘̂) 

30. Find 𝜶⃗⃗⃗. (𝜷⃗⃗⃗ × 𝜸⃗⃗⃗) if 𝜶⃗⃗⃗ = (−𝟐,−𝟐, 𝟒), 𝜷⃗⃗⃗ = (−𝟐, 𝟒,−𝟐), and 𝜸⃗⃗⃗ = (𝟒,−𝟐,−𝟐). Explain the 

geometric significance of the result.      [VU 2018] 

Answer: 

𝛼⃗. (𝛽 × 𝛾⃗) = |
−2 −2 4
−2 4 −2
4 −2 −2

| = 0 

This means that the three vectors are coplanar. 
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2. Vector Differentiation 

a. Introduction 
Let us recollect the first principle of differentiation of a real-valued function 𝑦 = 𝑓(𝑥) of only one 

variable 𝑥. The rate of change of 𝑦 with respect to (w.r.t.) 𝑥 is defined as: 

𝑦′ = 𝑓′(𝑥) =
𝑑𝑦

𝑑𝑥
=
𝑑

𝑑𝑥
(𝑓(𝑥)) 

= lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

Here, we will extend this definition to vector-valued functions of single and multiple variables. 

b. The Ordinary Derivative of a Vector 
A vector 𝐴 is a function of a scalar variable 𝑡 (let’s say 

time) in a specific interval or region, when there exists a 

value of 𝐴(𝑡) for every value of 𝑡. If with a change from 𝑡 

to 𝑡 + Δ𝑡, the vector changes by Δ𝐴, then the rate of 

change of 𝐴 with 𝑡 is: 

Δ𝐴

Δ𝑡
=
𝐴(𝑡 + Δ𝑡) − 𝐴(𝑡)

Δ𝑡
 

For an infinitesimal increment of Δ𝑡 → 0, the limiting value of  
Δ𝐴

Δ𝑡
 w.r.t. 𝑡 is called the ordinary 

derivative of the vector (the derivative exists when the limit exists): 

𝑑𝐴

𝑑𝑡
= lim

Δ𝑡→0

Δ𝐴

Δ𝑡
= lim

Δ𝑡→0

𝐴(𝑡 + Δ𝑡) − 𝐴(𝑡)

Δ𝑡
 

Since 
𝑑𝐴

𝑑𝑡
 itself is a vector and a function of 𝑡, we can define a derivative of 

𝑑𝐴

𝑑𝑡
 w.r.t 𝑡. This will be the 

second derivative: 

𝑑2𝐴

𝑑𝑡
=
𝑑

𝑑𝑡
(
𝑑𝐴

𝑑𝑡
) 

Thus higher-order derivatives are defined. 

Cartesian Coordinates: If a vector is expressed in terms of its Cartesian components, 𝐴 = 𝐴𝑥𝑖̂ +

𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂, then  

𝑑𝐴

𝑑𝑡
=
𝑑𝐴𝑥
𝑑𝑡

𝑖̂ +
𝑑𝐴𝑦

𝑑𝑡
𝑗̂ +

𝑑𝐴𝑧
𝑑𝑡

𝑘̂ 

C. Some Important Properties of Ordinary Derivatives of a Vector: 

7. Sum/Difference: If 𝐴 and 𝐵⃗⃗ are both differentiable vectors, then 
𝑑

𝑑𝑡
(𝐴 ± 𝐵⃗⃗) =

𝑑𝐴

𝑑𝑡
±
𝑑𝐵⃗⃗

𝑑𝑡
. 

Proof:  

𝑑

𝑑𝑡
(𝐴 ± 𝐵⃗⃗) = lim

Δ𝑡→0

{𝐴(𝑡 + Δ𝑡) ± 𝐵⃗⃗(𝑡 + Δ𝑡)} − {𝐴(𝑡) ± 𝐵⃗⃗(𝑡)}

Δ𝑡
 

= lim
Δ𝑡→0

𝐴(𝑡 + Δ𝑡) − 𝐴(𝑡)

Δ𝑡
± lim
Δ𝑡→0

𝐵⃗⃗(𝑡 + Δ𝑡) − 𝐵⃗⃗(𝑡)

Δ𝑡
=
𝑑𝐴

𝑑𝑡
±
𝑑𝐵⃗⃗

𝑑𝑡
 

8. Scalar Product: If 𝐴 and 𝐵⃗⃗ are both differentiable vectors, then 
𝑑

𝑑𝑡
(𝐴. 𝐵⃗⃗) = 𝐴.

𝑑𝐵⃗⃗

𝑑𝑡
+
𝑑𝐴

𝑑𝑡
. 𝐵⃗⃗ 

Proof: 

Figure 20 
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𝐴.
𝑑𝐵⃗⃗

𝑑𝑡
+
𝑑𝐴

𝑑𝑡
. 𝐵⃗⃗ = (𝐴𝑥 𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂). (

𝑑𝐵𝑥
𝑑𝑡

𝑖̂ +
𝑑𝐵𝑦

𝑑𝑡
𝑗̂ +

𝑑𝐵𝑧
𝑑𝑡

𝑘̂)

+ (
𝑑𝐴𝑥
𝑑𝑡

𝑖̂ +
𝑑𝐴𝑦

𝑑𝑡
𝑗̂ +

𝑑𝐴𝑧
𝑑𝑡

𝑘̂) . (𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂) 

= (𝐴𝑥
𝑑𝐵𝑥
𝑑𝑡

+ 𝐴𝑦
𝑑𝐵𝑦

𝑑𝑡
+ 𝐴𝑧

𝑑𝐵𝑧
𝑑𝑡
) + (

𝑑𝐴𝑥
𝑑𝑡

𝐵𝑥 +
𝑑𝐴𝑦

𝑑𝑡
𝐵𝑦 +

𝑑𝐴𝑧
𝑑𝑡

𝐵𝑧) 

= (𝐴𝑥
𝑑𝐵𝑥
𝑑𝑡

+
𝑑𝐴𝑥
𝑑𝑡

𝐵𝑥) + (𝐴𝑦
𝑑𝐵𝑦

𝑑𝑡
+
𝑑𝐴𝑦

𝑑𝑡
𝐵𝑦) + (𝐴𝑧

𝑑𝐵𝑧
𝑑𝑡

+
𝑑𝐴𝑧
𝑑𝑡

𝐵𝑧) 

=
𝑑

𝑑𝑡
(𝐴𝑥𝐵𝑥) +

𝑑

𝑑𝑡
(𝐴𝑦𝐵𝑦) +

𝑑

𝑑𝑡
(𝐴𝑧𝐵𝑧) =

𝑑

𝑑𝑡
(𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧) =

𝑑

𝑑𝑡
(𝐴. 𝐵⃗⃗) 

9. Cross Product: If 𝐴 and 𝐵⃗⃗ are both differentiable vectors, then 
𝑑

𝑑𝑡
(𝐴 × 𝐵⃗⃗) =

𝑑𝐴

𝑑𝑡
× 𝐵⃗⃗ + 𝐴 ×

𝑑𝐵⃗⃗

𝑑𝑡
 

Proof: Say, 𝐴 = 𝐴𝑥 𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂ and 𝐵⃗⃗ = 𝐵𝑥 𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂. Then 

𝐴 × 𝐵⃗⃗ = |

𝑖̂ 𝑗̂ 𝑘̂
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

| 

⇒
𝑑

𝑑𝑡
(𝐴 × 𝐵⃗⃗) =

𝑑

𝑑𝑡
|

𝑖̂ 𝑗̂ 𝑘̂
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧

| = ||

𝑖̂ 𝑗̂ 𝑘̂

𝑑𝐴𝑥
𝑑𝑡

𝑑𝐴𝑦

𝑑𝑡

𝑑𝐴𝑧
𝑑𝑡

𝐵𝑥 𝐵𝑦 𝐵𝑧

|| + ||

𝑖̂ 𝑗̂ 𝑘̂
𝐴𝑥 𝐴𝑦 𝐴𝑧
𝑑𝐵𝑥
𝑑𝑡

𝑑𝐵𝑦

𝑑𝑡

𝑑𝐵𝑧
𝑑𝑡

|| 

=
𝑑𝐴

𝑑𝑡
× 𝐵⃗⃗ + 𝐴 ×

𝑑𝐵⃗⃗

𝑑𝑡
 

10. Product of a scalar and a vector: If 𝐴 and 𝜙 are respectively a scalar and a vector and both are 

differentiable, then 
𝑑

𝑑𝑡
(𝜙𝐴) = 𝜙

𝑑𝐴

𝑑𝑡
+
𝑑𝜙

𝑑𝑡
𝐴 

Proof: Say 𝐴 = 𝐴𝑥 𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂, then [∵
𝑑𝑖̂

𝑑𝑡
=

𝑑𝑗̂

𝑑𝑡
=

𝑑𝑘̂

𝑑𝑡
= 0] 

𝑑

𝑑𝑡
(𝜙𝐴) =

𝑑

𝑑𝑡
(𝜙𝐴𝑥𝑖̂ + 𝜙𝐴𝑦𝑗̂ + 𝜙𝐴𝑧𝑘̂) =

𝑑

𝑑𝑡
(𝜙𝐴𝑥)𝑖̂ +

𝑑

𝑑𝑡
(𝜙𝐴𝑦)𝑗̂ +

𝑑

𝑑𝑡
(𝜙𝐴𝑧)𝑘̂ 

= 𝑖̂ (
𝑑𝜙

𝑑𝑡
𝐴𝑥 + 𝜙

𝑑𝐴𝑥
𝑑𝑡

) + 𝑗̂ (
𝑑𝜙

𝑑𝑡
𝐴𝑦 + 𝜙

𝑑𝐴𝑦

𝑑𝑡
) + 𝑘̂ (

𝑑𝜙

𝑑𝑡
𝐴𝑧 + 𝜙

𝑑𝐴𝑧
𝑑𝑡
) 

= 𝜙
𝑑𝐴

𝑑𝑡
+
𝑑𝜙

𝑑𝑡
𝐴 

Corollary: If 𝜙 = constant, ⇒ 𝑑
𝑑𝑡⁄ (𝜙) = 0 ⇒ 

𝑑

𝑑𝑡
(𝜙𝐴) = 𝜙

𝑑𝐴

𝑑𝑡
 

11. Scalar Triple Product: 

Derivation: Say, 𝐴 = 𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂, 𝐵⃗⃗ = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂ and 𝐶 = 𝐶𝑥 𝑖̂ + 𝐶𝑦 𝑗̂ + 𝐶𝑧𝑘̂. Then 

𝐴. (𝐵⃗⃗ × 𝐶) = |

𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧

| 
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⇒
𝑑

𝑑𝑡
[𝐴. (𝐵⃗⃗ × 𝐶)] =

𝑑

𝑑𝑡
|

𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧

|

= ||

𝑑𝐴𝑥
𝑑𝑡

𝑑𝐴𝑦

𝑑𝑡

𝑑𝐴𝑧
𝑑𝑡

𝐵𝑥 𝐵𝑦 𝐵𝑧
𝐶𝑥 𝐶𝑦 𝐶𝑧

|| + ||

𝐴𝑥 𝐴𝑦 𝐴𝑧
𝑑𝐵𝑥
𝑑𝑡

𝑑𝐵𝑦

𝑑𝑡

𝑑𝐵𝑧
𝑑𝑡

𝐶𝑥 𝐶𝑦 𝐶𝑧

|| + ||

𝐴𝑥 𝐴𝑦 𝐴𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝑑𝐶𝑥
𝑑𝑡

𝑑𝐶𝑦

𝑑𝑡

𝑑𝐶𝑧
𝑑𝑡

||

=
𝑑𝐴

𝑑𝑡
. (𝐵⃗⃗ × 𝐶) + 𝐴. (

𝑑𝐵⃗⃗

𝑑𝑡
× 𝐶) + 𝐴. (𝐵⃗⃗ ×

𝑑𝐶

𝑑𝑡
) 

12. Vector Triple Product:  

𝑑

𝑑𝑡
[𝐴 × (𝐵⃗⃗ × 𝐶)] =

𝑑𝐴

𝑑𝑡
× (𝐵⃗⃗ × 𝐶) + 𝐴 × (

𝑑𝐵⃗⃗

𝑑𝑡
× 𝐶) + 𝐴 × (𝐵⃗⃗ ×

𝑑𝐶

𝑑𝑡
) 

D. Partial Derivatives of Vectors: 

Suppose 𝐴 is a vector depending on more than one variable, say 𝑥, 𝑦, 𝑧 for example. Then we write 

𝐴 = 𝐴(𝑥, 𝑦, 𝑧). The partial derivative of 𝐴 w.r.t. 𝑥 is defined and denoted as follows when the limit 

exists: 

𝜕𝐴

𝜕𝑥
= lim

Δ𝑥→0

𝐴(𝑥 + Δ𝑥, 𝑦, 𝑧) − 𝐴(𝑥, 𝑦, 𝑧)

Δ𝑥
 

Similarly, the following are the partial derivatives of 𝐴 w.r.t. 𝑦 and 𝑧, respectively, when the limits 

exist: 

𝜕𝐴

𝜕𝑦
= lim

Δ𝑦→0

𝐴(𝑥, 𝑦 + Δ𝑦, 𝑧) − 𝐴(𝑥, 𝑦, 𝑧)

Δ𝑦
 

𝜕𝐴

𝜕𝑧
= lim

Δ𝑧→0

𝐴(𝑥, 𝑦, 𝑧 + Δ𝑧) − 𝐴(𝑥, 𝑦, 𝑧)

Δ𝑧
 

The remarks on continuity and differentiability of functions of one variable can be extended to two 

or more variables. So, if 𝐴 = 𝐴(𝑥, 𝑦, 𝑧), and the variables change infinitesimally to 𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 

and 𝑧 + 𝑑𝑧, then the total infinitesimal change in 𝐴: 

𝑑𝐴 =
𝜕𝐴

𝜕𝑥
𝑑𝑥 +

𝜕𝐴

𝜕𝑦
𝑑𝑦 +

𝜕𝐴

𝜕𝑧
𝑑𝑧 

c. Scalar and Vector Fields 
When a quantity changes from one point to another 

in a region of space, it can be expressed as a 

function of position in that region, and that region is 

then called the field of that quantity. These are of 

two types: 

 Scalar Fields: When the value of a scalar 

quantity 𝜙 (it may be a dimensionless mathematical 

number or a physical quantity) changes 

continuously from one point to another, e.g. with 

𝑥, 𝑦, and 𝑧 in the physical space, then 𝜙 = 𝜙(𝑥, 𝑦, 𝑧) 
Figure 21  
By Lucas Vieira - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?curi
d=20462138 
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is the field of that scalar. 

In Figure 2 there is a scalar field such as temperature, electric potential, or pressure, where 

the intensity of the field is represented by different hues of colors. Clearly, as the field is 

uniquely determined by the magnitude of the scalar at each position, it is independent of a 

coordinate system. 

 Vector Fields: In this case, if the continuously 

changing quantity from point to point is a vector 𝐴 =

𝐴(𝑥, 𝑦, 𝑧), then every point the corresponding region 

has a specific vector (instead of a number) associated 

with it. In terms of coordinates, a vector field in 𝑛-

dimensional space can be represented as a function 

that associates an 𝑛-tuple of 

real numbers to each point of 

the domain (e.g. 𝐴𝑥 , 𝐴𝑦, 𝐴𝑧 for 

three dimensions). This representation of a vector field depends on 

the coordinate system, and there is a well-defined transformation law 

in passing from one coordinate system to the other. 

In the adjacent figure (Figure 3), we see a two-dimensional vector field 

𝐴 = sin 𝑦 𝑖̂ + sin 𝑥 𝑗.̂ Examples of a vector field are electric field, 

magnetic field, gravitational field, etc. In Figure 4 we see the scattered 

iron fillings rearranging themselves around a magnet, depicting the 

magnetic field. We call them magnetic field lines. 

d. Vector Differential Operator 
In mathematics, an operator is generally a mapping or function that acts on elements of a space to 

produce elements of the same or other space. The vector differential operator 

∇⃗⃗⃗=
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂ = 𝑖̂

𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
 

is called Del or Nabla. For most cases, this operator has properties similar to that of ordinary vectors. 

In its current form, it has no meaning, as it has not been applied to anything. To understand its effect 

and meaning, we need to ‘operate’ it on a scalar or a vector. 

A. Gradient 
 Let 𝜙(𝑥, 𝑦, 𝑧) be a scalar function defined and 

differentiable at each point (𝑥, 𝑦, 𝑧) in a 

certain region of space (i.e. 𝜙defines a 

differentiable scalar field). Then the gradient 

of 𝜙, written ‘∇𝜙’ or ‘𝑔𝑟𝑎𝑑 𝜙’, is defined as  

∇⃗⃗⃗𝜙 = (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
)𝜙

= 𝑖̂
𝜕𝜙

𝜕𝑥
+ 𝑗̂

𝜕𝜙

𝜕𝑦
+ 𝑘̂

𝜕𝜙

𝜕𝑧
 

In Figure 5, the gradient of the function 

𝑓(𝑥, 𝑦) = −(cos2 𝑥 + cos2 𝑦)2 is depicted as 

a projected vector field on the bottom plane. 

Figure 23  
By Newton Henry Black - Newton Henry Black, Harvey N. 
Davis (1913) Practical Physics, The MacMillan Co., USA, p. 
242, fig. 200, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=73846 

Figure 22  
By Jim.belk - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?
curid=8008790 

Figure 24  
By MartinThoma - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=71375503 
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Note: del, operating on a scalar field, creates a vector field. The direction of the gradient of a 

function denotes the direction in which the function changes maximally and the magnitude of the 

gradient shows the rate of change of the function w.r.t position in that direction. 

 

Figure 25  
http://15462.courses.cs.cmu.edu/fall2018/lecture/vectorcalc/slide_024 

Directional Derivatives: 
 How do we think about derivatives of a 

function which has multiple variables? 

Let’s say we have a function 𝑓(𝑥1, 𝑥2). 

We can cut a slice through the function 

along some line, i.e. some arbitrary 

direction. Figure 25 shows this function 

which is cut twice, along the direction of 

two different vectors 𝑢⃗⃗ and 𝑣⃗, 

respectively. The directional derivative of 

𝑓 at a point with position vector 𝑥0⃗⃗⃗⃗⃗ in the 

direction of 𝑢⃗⃗ is 

 

𝐷𝑢⃗⃗⃗𝑓(𝑥0⃗⃗⃗⃗⃗) = lim
𝜀→0

𝑓(𝑥0⃗⃗⃗⃗⃗ + 𝜀 𝑢⃗⃗) − 𝑓(𝑥0⃗⃗⃗⃗⃗)

𝜀
= lim

𝜀→0

𝑓(𝑥0
1 + 𝜀 𝑢1, 𝑥0

2 + 𝜀 𝑢2) − 𝑓(𝑥0
1, 𝑥0

2)

𝜀
 

where 𝜀 is a small increment in the direction of 𝑢⃗⃗. Similarly, we can define 𝐷𝑣⃗⃗𝑓 as well. 

Given this definition of directional derivatives, the directional derivative of a scalar function 

𝜙(𝑥, 𝑦, 𝑧) in the direction of a vector 𝐴 is 𝐷𝐴𝜙. If the unit vector in the direction of 𝐴 is 𝑎̂ = 𝐴 |𝐴|⁄ , 

then  

𝐷𝐴𝜙 = ∇⃗⃗⃗𝜙. 𝑎̂ 

In other words, the directional derivative of a scalar function 𝜙(𝑥, 𝑦, 𝑧) at a point (𝑥1, 𝑦1, 𝑧1) in the 

direction of a unit vector 𝑛̂ is 𝐷𝑛̂𝜙 = {(∇⃗⃗⃗𝜙)(𝑥1,𝑦1,𝑧1)
} . 𝑛̂ 

Figure 26 
https://www2.math.tamu.edu/~glahodn
y/Math251/Section%2012.6.pdf 
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B. Divergence 

Suppose 𝐴(𝑥, 𝑦, 𝑧) = 𝐴𝑥(𝑥, 𝑦, 𝑧)𝑖̂ +

𝐴𝑦(𝑥, 𝑦, 𝑧)𝑗̂ + 𝐴𝑧(𝑥, 𝑦, 𝑧)𝑘̂ is defined and 

differentiable at each point (𝑥, 𝑦, 𝑧) in a region 

of space (i.e., 𝐴 defines a differentiable vector 

field). Then the divergence of 𝑨⃗⃗⃗ is defined as 

∇⃗⃗⃗. 𝐴 = (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) . (𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂

+ 𝐴𝑧𝑘̂) =
𝜕𝐴𝑥
𝜕𝑧

+
𝜕𝐴𝑦

𝜕𝑧
+
𝜕𝐴𝑧
𝜕𝑧

 

Hence, the divergence of a vector is a scalar 

function.  

Note: ∇⃗⃗⃗. 𝐴 ≠ 𝐴. ∇⃗⃗⃗. So, while 𝐴 is a vector, ∇⃗⃗⃗. 𝐴 

is a scalar but 𝐴. ∇⃗⃗⃗ is an operator. 

Flux: 
In vector calculus, the flux of a 

vector field is a scalar quantity, 

defined as the surface integral of 

the perpendicular component of 

a vector field over a surface. To 

calculate the flux of a vector field 

𝑭 (red arrows) through a surface 

𝑺, the surface is divided into 

small patches 𝑑𝑺. The flux 

through each patch is equal to 

the normal (perpendicular) 

component of the field, the dot product of 𝑭(𝑥⃗) with the unit normal vector 𝒏(𝑥⃗) (blue arrows) at the 

point 𝑥⃗ multiplied by the area 𝑑𝑺. The sum of 𝑭. 𝒏𝑑𝑺 for each patch on the surface is the flux through 

the surface. 

Divergence of a vector field signifies the 

outward flux per unit volume. In Figure 8 we 

have superposed pictures of two fields. The first 

one is a vector field 𝐴 represented by arrows of 

varying lengths. The other is a scalar field 

representing ∇⃗⃗⃗. 𝐴, with positive to negative 

values of it represented by a shade from white 

to blue. Clearly, there is a large outward flux at 

one point (white region) and a large incoming 

flux at another (blue region). The first one is called a source and the second one is called a sink of the 

vector field. When ∇⃗⃗⃗. 𝐴 = 0, the field is called solenoidal. 

Figure 27  
http://15462.courses.cs.cmu.edu/fall2018/le
cture/vectorcalc/slide_039 

Figure 28  
By Chetvorno - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=82743
721 

Figure 29  
https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives/divergence-and-curl-articles/a/divergence 
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C. Curl 

Suppose 𝐴(𝑥, 𝑦, 𝑧) = 𝐴𝑥(𝑥, 𝑦, 𝑧)𝑖̂ + 𝐴𝑦(𝑥, 𝑦, 𝑧)𝑗̂ + 𝐴𝑧(𝑥, 𝑦, 𝑧)𝑘̂ 

defines a differentiable vector field. Then the Curl of 𝑨⃗⃗⃗ is 

defined as: 

∇⃗⃗⃗ × 𝐴 = (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) × (𝐴𝑥 𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂) 

= ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

|| 

= 𝑖̂ (
𝜕𝐴𝑧
𝜕𝑦

−
𝜕𝐴𝑦

𝜕𝑧
) + 𝑗̂ (

𝜕𝐴𝑥
𝜕𝑧

−
𝜕𝐴𝑧
𝜕𝑥

) + 𝑘̂ (
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

) 

Note: In the expansion of the determinant the operators 
𝜕

𝜕𝑥𝑖 
 must 

precede 𝐴𝑖.  

The curl of a vector field at a specific point is also a vector, whose 

length and direction denote the magnitude and axis of the 

maximum circulation of the field calculated at that point. The curl 

of a field is formally defined as the circulation density at each 

point of the field. Figure 11 shows a 2-dimensional vector with a 

uniform curl. A vector with zero curl (∇⃗⃗⃗ × 𝐴 = 0) is called an 

Irrotational vector.  

D. Some Important Properties 

We have already seen that gradient of a scalar 𝜙 and curl of a vector 𝐴 are both vectors. Hence we 

can calculate the divergence and curl of both of these. Similarly, as the divergence of a vector is a 

scalar, we can calculate the gradient of that. 

 𝐷𝑖𝑣. 𝐺𝑟𝑎𝑑. 𝜙 = 𝛁⃗⃗⃗. (𝛁⃗⃗⃗𝝓) 

= (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) . (𝑖̂

𝜕𝜙

𝜕𝑥
+ 𝑗̂

𝜕𝜙

𝜕𝑦
+ 𝑘̂

𝜕𝜙

𝜕𝑧
) =

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
+
𝜕2𝜙

𝜕𝑧2
 

= (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
)𝜙 = 𝛁𝟐𝝓 

Here, ∇2= (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) is called the Laplacian /Laplacian Operator, which is a scalar 

operator. 

 𝐶𝑢𝑟𝑙. 𝐺𝑟𝑎𝑑. 𝜙 = 𝛁⃗⃗⃗ × (𝛁⃗⃗⃗𝝓) 

= ∇⃗⃗⃗ × (𝑖̂
𝜕𝜙

𝜕𝑥
+ 𝑗̂

𝜕𝜙

𝜕𝑦
+ 𝑘̂

𝜕𝜙

𝜕𝑧
) =

|

|

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝜕𝜙

𝜕𝑥

𝜕𝜙

𝜕𝑦

𝜕𝜙

𝜕𝑧

|

|
 

= 𝑖̂ {
𝜕

𝜕𝑦
(
𝜕𝜙

𝜕𝑧
) −

𝜕

𝜕𝑧
(
𝜕𝜙

𝜕𝑦
)} + 𝑗̂ {

𝜕

𝜕𝑧
(
𝜕𝜙

𝜕𝑥
) −

𝜕

𝜕𝑥
(
𝜕𝜙

𝜕𝑧
)} + 𝑘̂ {

𝜕

𝜕𝑥
(
𝜕𝜙

𝜕𝑦
) −

𝜕

𝜕𝑦
(
𝜕𝜙

𝜕𝑥
)} 

= 𝑖̂ (
𝜕2𝜙

𝜕𝑦𝜕𝑧
−
𝜕2𝜙

𝜕𝑧𝜕𝑦
) + 𝑗̂ (

𝜕2𝜙

𝜕𝑧𝜕𝑥
−
𝜕2𝜙

𝜕𝑥𝜕𝑧
) + 𝑘̂ (

𝜕2𝜙

𝜕𝑥𝜕𝑦
−
𝜕2𝜙

𝜕𝑦𝜕𝑥
) = 𝟎 

Figure 30  
By Loodog at English Wikipedia, CC BY 2.5, 
https://commons.wikimedia.org/w/index.php?curi
d=2438212 

Figure 31  
http://mathonline.wikidot.
com/the-curl-of-a-vector-
field 
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 𝐺𝑟𝑎𝑑. 𝐷𝑖𝑣. 𝐴 = 𝛁⃗⃗⃗(𝛁⃗⃗⃗. 𝑨⃗⃗⃗) 

= (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
)(
𝜕𝐴𝑥
𝜕𝑧

+
𝜕𝐴𝑦

𝜕𝑧
+
𝜕𝐴𝑧
𝜕𝑧
) = 𝑫𝒐 𝒊𝒕 𝒂𝒕 𝒉𝒐𝒎𝒆 

 𝐷𝑖𝑣. 𝐶𝑢𝑟𝑙. 𝐴 = 𝛁⃗⃗⃗. (𝛁⃗⃗⃗ × 𝑨⃗⃗⃗) 

= (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) . ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

|| 

= (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) . {𝑖̂ (

𝜕𝐴𝑧
𝜕𝑦

−
𝜕𝐴𝑦

𝜕𝑧
) + 𝑗̂ (

𝜕𝐴𝑥
𝜕𝑧

−
𝜕𝐴𝑧
𝜕𝑥

) + 𝑘̂ (
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

)} 

=
𝜕

𝜕𝑥
(
𝜕𝐴𝑧
𝜕𝑦

−
𝜕𝐴𝑦

𝜕𝑧
) +

𝜕

𝜕𝑦
(
𝜕𝐴𝑥
𝜕𝑧

−
𝜕𝐴𝑧
𝜕𝑥

) +
𝜕

𝜕𝑧
(
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

) 

=
𝜕2𝐴𝑧
𝜕𝑥𝜕𝑦

−
𝜕2𝐴𝑦

𝜕𝑥𝜕𝑧
+
𝜕2𝐴𝑥
𝜕𝑦𝜕𝑧

−
𝜕2𝐴𝑧
𝜕𝑦𝜕𝑥

+
𝜕2𝐴𝑦

𝜕𝑧𝜕𝑥
−
𝜕2𝐴𝑥
𝜕𝑧𝜕𝑦

= 𝟎 

 𝐶𝑢𝑟𝑙. 𝐶𝑢𝑟𝑙. 𝐴 = ∇⃗⃗⃗ × (∇⃗⃗⃗ × 𝐴) = ∇⃗⃗⃗(∇⃗⃗⃗. 𝐴) − ∇2𝐴 

This expression does not help us much, other than defining a Vector Laplacian ∇2𝐴 =

(∇2𝐴𝑋, ∇
2𝐴𝑦, ∇

2𝐴𝑧). 

∴ 𝛁𝟐𝑨⃗⃗⃗ = 𝛁⃗⃗⃗(𝛁⃗⃗⃗. 𝑨⃗⃗⃗) − 𝛁⃗⃗⃗ × (𝛁⃗⃗⃗ × 𝑨⃗⃗⃗) 

E. Other Important Properties 

 𝛁⃗⃗⃗. (𝝓𝑨⃗⃗⃗) 

= (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) . (𝜙𝐴𝑥 𝑖̂ + 𝜙𝐴𝑦𝑗̂ + 𝜙𝐴𝑧𝑘̂) =

𝜕

𝜕𝑥
(𝜙𝐴𝑥) +

𝜕

𝜕𝑦
(𝜙𝐴𝑦) +

𝜕

𝜕𝑧
(𝜙𝐴𝑧)

= 𝜙 (
𝜕𝐴𝑥
𝜕𝑧

+
𝜕𝐴𝑦

𝜕𝑧
+
𝜕𝐴𝑧
𝜕𝑧
) + (𝐴𝑥

𝜕𝜙

𝜕𝑥
+ 𝐴𝑦

𝜕𝜙

𝜕𝑦
+ 𝐴𝑧

𝜕𝜙

𝜕𝑧
)

= 𝜙(∇⃗⃗⃗. 𝐴) + (𝐴𝑥 𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧𝑘̂). (𝑖̂
𝜕𝜙

𝜕𝑥
+ 𝑗̂

𝜕𝜙

𝜕𝑦
+ 𝑘̂

𝜕𝜙

𝜕𝑧
) = 𝝓(𝛁⃗⃗⃗. 𝑨⃗⃗⃗) + 𝑨⃗⃗⃗. 𝛁⃗⃗⃗𝝓 

 𝛁⃗⃗⃗ × (𝝓𝑨⃗⃗⃗) = 𝛁⃗⃗⃗𝝓 × 𝑨⃗⃗⃗ + 𝝓𝛁⃗⃗⃗ × 𝑨⃗⃗⃗   (Prove this) 

 𝛁⃗⃗⃗. (𝑨⃗⃗⃗ × 𝑩⃗⃗⃗) = 𝑨⃗⃗⃗. (𝛁⃗⃗⃗ × 𝑩⃗⃗⃗) + 𝑩⃗⃗⃗. (𝛁⃗⃗⃗ × 𝑨⃗⃗⃗)  (Prove this) 

e. Solved Questions 
31. If 𝑨⃗⃗⃗ = 𝒙𝒊̂ + 𝒚𝟐𝒋̂ + 𝒛𝟑𝒌̂ . Find 𝒅𝑨⃗⃗⃗ 

Answer: 𝐴 = 𝑥𝑖̂ + 𝑦2𝑗̂ + 𝑧3𝑘̂. 

∴
𝜕𝐴

𝜕𝑥
= 𝑖̂, 

𝜕𝐴

𝜕𝑦
= 2𝑦𝑗̂, and 

𝜕𝐴

𝜕𝑧
= 3𝑧2𝑘̂ 

Hence, the change in 𝐴 is: 

𝑑𝐴 =
𝜕𝐴

𝜕𝑥
𝑑𝑥 +

𝜕𝐴

𝜕𝑦
𝑑𝑦 +

𝜕𝐴

𝜕𝑧
𝑑𝑧 = 𝑖̂ 𝑑𝑥 + 𝑗̂ 2𝑦𝑑𝑦 + 𝑘̂ 3𝑧2𝑑𝑧 
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32. Show that 𝛁⃗⃗⃗𝝓 is a perpendicular vector on the plane denoted by 𝝓(𝒙, 𝒚, 𝒛) = 𝒄 (𝒄 is a 

constatnt) 

Answer:  

Let’s say 𝑃 is a point on the plane 𝜙(𝑥, 𝑦, 𝑧) = 𝑐, 

with coordinates (𝑥, 𝑦, 𝑧). Hence, the position 

vector of 𝑃 is 𝑟 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂. So, the vector 

𝑑𝑟 = 𝑑𝑥 𝑖̂ + 𝑑𝑦 𝑗̂ + 𝑑𝑧 𝑘̂ denoting the infinitesimal 

change in 𝑟, lies in the tangent plane to the plane 𝜙 

at 𝑃. 

Now,  

𝑑𝜙 =
𝜕𝜙

𝜕𝑥
𝑑𝑥 +

𝜕𝜙

𝜕𝑦
𝑑𝑦 +

𝜕𝜙

𝜕𝑧
𝑑𝑧 

= (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) . (𝑑𝑥 𝑖̂ + 𝑑𝑦 𝑗̂ + 𝑑𝑧 𝑘̂) 

= (∇⃗⃗⃗𝜙). 𝑑𝑟 = 0 

[∵  𝜙(𝑥, 𝑦, 𝑧) = 𝑐 ⇒ 𝑑𝜙 = 0] 

i.e. (∇⃗⃗⃗𝜙) is perpendicular to 𝑑𝑟 (for any 𝑑𝑟 ). 𝑑𝑟 lies in the tangent plane and thus ∇⃗⃗⃗𝜙 must 

be perpendicular to the tangent plane itself ⇒ the gradient is perpendicular to the surface 

𝜙(𝑥, 𝑦, 𝑧) = 𝑐. 

33. Expand and simplify the form of 𝛁⃗⃗⃗(𝛁⃗⃗⃗. 𝑨⃗⃗⃗)… 

34. If 𝝓(𝒙, 𝒚, 𝒛) = 𝒙𝒚𝟐𝒛𝟑, then find 𝛁⃗⃗⃗𝝓 at the point (𝟒,−𝟏, 𝟏) 

Answer: 

𝜙(𝑥, 𝑦, 𝑧) = 𝑥𝑦2𝑧3, hence 
𝜕𝜙

𝜕𝑥
= 𝑦2𝑧3, 

𝜕𝜙

𝜕𝑦
= 2𝑥𝑦𝑧3, and 

𝜕𝜙

𝜕𝑧
= 3𝑥𝑦2𝑧2 

∴ ∇⃗⃗⃗𝜙 = 𝑖̂
𝜕𝜙

𝜕𝑥
+ 𝑗̂

𝜕𝜙

𝜕𝑦
+ 𝑘̂

𝜕𝜙

𝜕𝑧
= 𝑦2𝑧3𝑖̂ + 2𝑥𝑦𝑧3𝑗̂ + 3𝑥𝑦2𝑧2𝑘̂ 

∴ (∇⃗⃗⃗𝜙)
(𝟒,−𝟏,𝟏)

= 𝑖̂ − 8𝑗̂ + 12𝑘̂ 

35. If 𝝓(𝒙, 𝒚, 𝒛) = 𝒙𝟐𝒚𝟐𝒛𝟐, then find the directional derivative of 𝝓 at the point (𝟏,−𝟏, 𝟐) in 

the direction of the vector (𝒊̂ − 𝟐𝒋̂ + 𝟐𝒌̂). 

Answer: 

𝜙(𝑥, 𝑦, 𝑧) = 𝑥2𝑦2𝑧2, hence 
𝜕𝜙

𝜕𝑥
= 2𝑥𝑦2𝑧2, 

𝜕𝜙

𝜕𝑦
= 2𝑥2𝑦𝑧2, and 

𝜕𝜙

𝜕𝑧
= 2𝑥2𝑦2𝑧 

∴ ∇⃗⃗⃗𝜙 = 𝑖̂
𝜕𝜙

𝜕𝑥
+ 𝑗̂

𝜕𝜙

𝜕𝑦
+ 𝑘̂

𝜕𝜙

𝜕𝑧
= 2𝑥𝑦2𝑧2𝑖̂ + 2𝑥2𝑦𝑧2𝑗̂ + 2𝑥2𝑦2𝑧𝑘̂ 

∴ (∇⃗⃗⃗𝜙)
(𝟏,−𝟏,𝟐)

= 8𝑖̂ − 8𝑗̂ + 4𝑘̂ 

Now the unit vector in the direction of (𝑖̂ − 2𝑗̂ + 2𝑘̂) 

𝑛̂ =
𝑖̂ − 2𝑗̂ + 2𝑘̂

√1 + 4 + 4
=
𝑖̂ − 2𝑗̂ + 2𝑘̂

3
 

Hence, the directional derivative of 𝜙(𝑥, 𝑦, 𝑧) at the point (1,−1,2) in the direction of 𝑛̂ 

{(∇⃗⃗⃗𝜙)
(𝟏,−𝟏,𝟐)

} . 𝑛̂ = (8𝑖̂ − 8𝑗̂ + 4𝑘̂). (
𝑖̂ − 2𝑗̂ + 2𝑘̂

3
) 

=
8 + 16 + 8

3
=
32

3
 

36. If 𝒓⃗⃗ = 𝒙 𝒊̂ + 𝒚 𝒋̂ + 𝒛 𝒌̂, find 𝛁⃗⃗⃗ (
𝟏

𝒓
).      [CU 2014] 

Answer: 

Method 1: 

https://skeptric.com/derivative/ 
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𝑟 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂, ∴ 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 ⇒
1

𝑟
= (𝑥2 + 𝑦2 + 𝑧2)−

1

2 

∴ ∇⃗⃗⃗ (
1

𝑟
) = (

𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) (

1

𝑟
) =

𝜕

𝜕𝑥
(
1

𝑟
) 𝑖̂ +

𝜕

𝜕𝑦
(
1

𝑟
) 𝑗̂ +

𝜕

𝜕𝑧
(
1

𝑟
) 𝑘̂ 

Now, 
𝜕

𝜕𝑥
(
1

𝑟
) =

𝜕

𝜕𝑟
(
1

𝑟
)
𝜕𝑟

𝜕𝑥
= −

1

𝑟2
𝜕

𝜕𝑥
(√𝑥2 + 𝑦2 + 𝑧2) = (−

1

𝑟2
)
1

2
 (𝑥2 + 𝑦2 + 𝑧2)−

1
2 2𝑥

= −
𝑥

(𝑥2 + 𝑦2 + 𝑧2)
3
2

= −
𝑥

𝑟3
 

Similarly, 
𝜕

𝜕𝑦
(
1

𝑟
) = −

𝑦

𝑟3
 and 

𝜕

𝜕𝑧
(
1

𝑟
) = −

𝑧

𝑟3
 

∴  𝛁⃗⃗⃗ (
𝟏

𝒓
) = (−

𝑥

𝑟3
) 𝑖̂ + (−

𝑦

𝑟3
) 𝑗̂ + (−

𝑧

𝑟3
) 𝑘̂ = −

𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂

𝑟3
= −

𝒓⃗⃗

𝒓𝟑
 

Method 2: 

We know 𝛁⃗⃗⃗𝒓𝒏 = 𝒏 𝒓𝒏−𝟐 𝒓⃗⃗ (see the next problem) 

here 𝑛 = −1. 

∴ ∇⃗⃗⃗ (
1

𝑟
) = (−1)(𝑟−1−2)𝑟 = −

𝑟

𝑟3
 

37. Show that 𝛁⃗⃗⃗𝒓𝒏 = 𝒏 𝒓𝒏−𝟐 𝒓⃗⃗. 

Answer: 

∇⃗⃗⃗(𝑟𝑛) = ∇⃗⃗⃗ (√𝑥2 + 𝑦2 + 𝑧2)
𝑛
= ∇⃗⃗⃗(𝑥2 + 𝑦2 + 𝑧2)

𝑛
2

=
𝜕

𝜕𝑥
((𝑥2 + 𝑦2 + 𝑧2)

𝑛
2) 𝑖̂ +

𝜕

𝜕𝑦
((𝑥2 + 𝑦2 + 𝑧2)

𝑛
2) 𝑗̂

+
𝜕

𝜕𝑧
((𝑥2 + 𝑦2 + 𝑧2)

𝑛
2) 𝑘̂

= (
𝑛

2
(𝑥2 + 𝑦2 + 𝑧2)

𝑛
2
−1 2𝑥) 𝑖̂ + (

𝑛

2
(𝑥2 + 𝑦2 + 𝑧2)

𝑛
2
−1 2𝑦) 𝑗̂

+ (
𝑛

2
(𝑥2 + 𝑦2 + 𝑧2)

𝑛
2
−1 2𝑧) 𝑘̂ = 𝑛(𝑥2 + 𝑦2 + 𝑧2)

𝑛−2
2 (𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂)

= 𝑛(𝑟)𝑛−2 𝑟 

38. Find the Directional Derivative of 𝝓 = (
𝟏

𝒓
) along 𝒓⃗⃗ = 𝒙 𝒊̂ + 𝒚 𝒋̂ + 𝒛 𝒌̂. 

Answer: 

∇⃗⃗⃗𝜙 = −
𝑟

𝑟3
  (from problem 6 above) 

Hence, the directional derivative of ∇⃗⃗⃗𝜙 in the direction of 𝑟 

= ∇⃗⃗⃗𝜙. 𝑟̂ = −
𝑟

𝑟3
. 𝑟̂ = −

𝑟

𝑟3
𝑟̂. 𝑟̂ = −

1

𝑟2
 

39. If 𝒓⃗⃗ = 𝒙 𝒊̂ + 𝒚 𝒋̂ + 𝒛 𝒌̂, find (𝛁⃗⃗⃗. 𝒓⃗⃗). 

Answer: 

∇⃗⃗⃗. 𝑟 = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) . (𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂) =

𝜕

𝜕𝑥
(𝑥) +

𝜕

𝜕𝑦
(𝑦) +

𝜕

𝜕𝑧
(𝑧) = 1 + 1 + 1 = 3 

40. If 𝒓⃗⃗ = 𝒙 𝒊̂ + 𝒚 𝒋̂ + 𝒛 𝒌̂, find (𝛁⃗⃗⃗ × 𝒓⃗⃗). 

Answer: 

∇⃗⃗⃗ × 𝑟 = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) × (𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂) = ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑥 𝑦 𝑧

||

= 𝑖̂ (
𝜕𝑧

𝜕𝑦
−
𝜕𝑦

𝜕𝑧
) + 𝑗̂ (

𝜕𝑥

𝜕𝑧
−
𝜕𝑧

𝜕𝑥
) + 𝑘̂ (

𝜕𝑦

𝜕𝑥
−
𝜕𝑥

𝜕𝑦
) = 0 
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41. If 𝝎⃗⃗⃗⃗ is a constant vector,  𝒓⃗⃗ is the position vector, and 𝒗⃗⃗⃗ = 𝝎⃗⃗⃗⃗ × 𝒓⃗⃗, then show that 𝝎⃗⃗⃗⃗ =
𝟏

𝟐
(𝛁⃗⃗⃗ × 𝒗⃗⃗⃗).        [VU 2011] 

Answer: 

Let’s say that the cartesian components of the vector 𝜔⃗⃗⃗ are respectively 𝜔𝑥, 𝜔𝑦, and 𝜔𝑧. 

Then, 

𝑣⃗ = 𝜔⃗⃗⃗ × 𝑟 = |
𝑖̂ 𝑗̂ 𝑘̂
𝜔𝑥 𝜔𝑦 𝜔𝑧
𝑥 𝑦 𝑧

| = 𝑖(̂𝜔𝑦𝑧 − 𝜔𝑧𝑦) + 𝑗̂(𝜔𝑧𝑥 − 𝜔𝑥𝑧) + 𝑘̂(𝜔𝑥𝑦 − 𝜔𝑦𝑥) 

∴
1

2
(∇⃗⃗⃗ × 𝑣⃗) =

1

2 |
|

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

(𝜔𝑦𝑧 − 𝜔𝑧𝑦) (𝜔𝑧𝑥 − 𝜔𝑥𝑧) (𝜔𝑥𝑦 − 𝜔𝑦𝑥)

|
|

= 𝑖̂ (
𝜕(𝜔𝑥𝑦 − 𝜔𝑦𝑥)

𝜕𝑦
−
𝜕(𝜔𝑧𝑥 − 𝜔𝑥𝑧)

𝜕𝑧
)

+ 𝑗̂ (
𝜕(𝜔𝑦𝑧 − 𝜔𝑧𝑦)

𝜕𝑧
−
𝜕(𝜔𝑥𝑦 − 𝜔𝑦𝑥)

𝜕𝑥
)

+ 𝑘̂ (
𝜕(𝜔𝑧𝑥 − 𝜔𝑥𝑧)

𝜕𝑥
−
𝜕(𝜔𝑦𝑧 − 𝜔𝑧𝑦)

𝜕𝑦
)

=
1

2
[𝑖(̂𝜔𝑥 +𝜔𝑥) + 𝑗̂(𝜔𝑦 +𝜔𝑦) + 𝑘̂(𝜔𝑧 +𝜔𝑧)] = 𝜔⃗⃗⃗ (𝑸𝑬𝑫) 

42. If 𝝎⃗⃗⃗⃗ is a constant vector,  𝒓⃗⃗ is the position vector, and 𝒗⃗⃗⃗ = 𝝎⃗⃗⃗⃗ × 𝒓⃗⃗, then show that 𝛁⃗⃗⃗. 𝒗⃗⃗⃗ = 𝟎

 [VU 2012] 

Answer: 

∵ ∇⃗⃗⃗. (𝐴 × 𝐵⃗⃗) = 𝐵⃗⃗. (∇⃗⃗⃗ × 𝐴) − 𝐴. (∇⃗⃗⃗ × 𝐵⃗⃗), 

 ∇⃗⃗⃗ × 𝑟 = 0 [see problem 10], 

 and ∇⃗⃗⃗ × 𝜔⃗⃗⃗ = 0 [𝜔⃗⃗⃗ is a constant vector], 

∇⃗⃗⃗. 𝑣⃗ = ∇⃗⃗⃗. (𝜔⃗⃗⃗ × 𝑟) = 𝜔⃗⃗⃗. (∇⃗⃗⃗ × 𝑟) − 𝑟. (∇⃗⃗⃗ × 𝜔⃗⃗⃗) 

= 0 − 0 = 0 

43. If 𝑨⃗⃗⃗ = 𝒙𝟐𝒛 𝒊̂ + 𝟐𝒚𝟑𝒛𝟐 𝒋̂ + 𝒙𝒚𝟐 𝒌̂, what is 𝛁⃗⃗⃗. 𝑨⃗⃗⃗ at the point (𝟏,−𝟏, 𝟏)? 

Answer: 

∇⃗⃗⃗. 𝐴 =
𝜕

𝜕𝑥
(𝑥2𝑧) +

𝜕

𝜕𝑦
(2𝑦3𝑧2) +

𝜕

𝜕𝑧
(𝑥𝑦2) = 2𝑥𝑧 + 6𝑦2𝑧2 + 0 

∴ ∇⃗⃗⃗. 𝐴|
(1,−1,1)

= 2 + 6 = 8 

44. More problems to come… 
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3. Vector Integration 

a. Introduction 
The reader is expected to be familiar with the integration of real-valued function 𝑓(𝑥) of one 

variable, especially the indefinite integral 

∫𝑓(𝑥) 𝑑𝑥 

and the definite integral on a closed interval 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

 

Here we extend these definitions to vector-valued functions. 

b. Ordinary Integration 
Let’s say 𝐴(𝑡) = 𝑖̂ 𝐴𝑥(𝑡) + 𝑗̂ 𝐴𝑦(𝑡) + 𝑘̂ 𝐴𝑧(𝑡) is a vector function of a scalar variable ‘𝑡’, where 𝐴𝑝 is 

the component of 𝐴 in the direction of the axis ‘𝑝’. Then the indefinite integral of 𝐴 w.r.t. 𝑡 is 

∫𝐴(𝑡) 𝑑𝑡 = ∫[𝑖 ̂𝐴𝑥(𝑡) + 𝑗̂ 𝐴𝑦(𝑡) + 𝑘̂ 𝐴𝑧(𝑡)] 𝑑𝑡 = 𝑖̂ ∫𝐴𝑥(𝑡) 𝑑𝑡 + 𝑗̂ ∫𝐴𝑦(𝑡) 𝑑𝑡 + 𝑘̂ ∫𝐴𝑧(𝑡) 𝑑𝑡 

If there exists a vector function 𝐵⃗⃗(𝑡) such that  𝐴(𝑡) =
𝑑 (𝐵⃗⃗(𝑡))

𝑑𝑡
⁄  , then 

∫𝐴(𝑡) 𝑑𝑡 = 𝐵⃗⃗(𝑡) + 𝑐 

where 𝑐 is an arbitrary constant vector (independent of 𝑡), and the definite integration 

∫ 𝐴(𝑡) 𝑑𝑡
𝑏

𝑎

= ∫ 𝑑 (𝐵⃗⃗(𝑡))
𝑏

𝑎

= (𝐵⃗⃗(𝑡) + 𝑐)|
𝑎

𝑏
= 𝐵⃗⃗(𝑏) − 𝐵⃗⃗(𝑎) 

c. Line Integral 
Suppose 𝑟(𝑡) = 𝑥(𝑡) 𝑖̂ +

𝑦(𝑡) 𝑗̂ + 𝑧(𝑡) 𝑘̂ is the position 

vector of points 𝑃(𝑥, 𝑦, 𝑧) and 

suppose 𝑟(𝑡) defines a curve 

𝐶 joining points 𝑃1and 𝑃2 

where 𝑡 = 𝑡1 and 𝑡2 

respectively. We assume that 

𝐶 is composed of a finite 

number of curves for each of 

which 𝑟(𝑡) has a continuous 

derivative. Let 𝐹⃗(𝑥, 𝑦, 𝑧) =

𝐹𝑥(𝑥, 𝑦, 𝑧) 𝑖̂ + 𝐹𝑦(𝑥, 𝑦, 𝑧) 𝑗̂ +

𝐹𝑧(𝑥, 𝑦, 𝑧) 𝑘̂ be a vector 

function of position defined 

and continuous along 𝐶. Then 

the integral of the tangential component of 𝐹⃗ along 𝐶 from 𝑃1 to 𝑃2, written as 

Figure 32 



 

 

30 

Sanhita Modak |      -PHY 

∫𝐹⃗(𝑟). 𝑑𝑟
𝐶

= ∫ 𝐹⃗(𝑟). 𝑑𝑟
𝑃2

𝑃1

= ∫𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 + 𝐹𝑧𝑑𝑧
𝐶

 

is an example of a line integral.  

 If 𝐶 is a closed curve (we 

suppose a simple closed curve, 

i.e. it doesn’t intersect itself 

anywhere), the integral around 𝐶 

is often denoted by 

∮𝐹⃗(𝑟). 𝑑𝑟 = ∮𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦

+ 𝐹𝑧𝑑𝑧 

Hence, the line integral of a 

vector function is a scalar 

quantity. When 𝐹⃗(𝑟) is a force 

on a particle moving along 𝐶, this 

line integral represents the work 

done by the force. In Fluid 

dynamics and aerodynamics, 

where 𝐹⃗ represents the velocity of the fluid, this integral is called the circulation of 𝐹⃗ about 𝐶. In 

general, any integral that is to be integrated along a curve is called a line integral. Such integrals can 

be defined in terms of the Riemann sum (limiting sum) of elementary calculus. 

Some Comments about Functions: (http://www.sharetechnote.com/html/Calculus_Integration_Line.bak) 

 

Figure 34 

The concept of line integral probably doesn’t sound very complicated to 

you, but given a specific real mathematical application using line integral, 

you probably don’t know what to do. A possible reason for this kind of 

difficulty is not because of the concept of line integral itself, but because of 

not knowing to represent the curve (path) in a function. The pre-college 

definition of a function is consistent with Figure 16, where one-to-one or 

one-to-many valued mappings are allowed, it fails in the case of Figure 17, which is a many-to-one 

map (Figures from Bin im Garten - Own work, ,). Now check out Figure 34. Plot A definitely can be a function since one value on the 

𝑥 axis (independent variable) is mapped to one value on 𝑦 axis (dependent variable). How about plot B? It cannot be: at 

least according what we have learned in most of high school math. In this example, some 𝑥 value maps to two different 𝑦 

value. Same is true for Plot C. Here lies the problem. Most of the curves we deal with look like plot B or C. We can 

represent this type of curves in one of the following type of functions: 

i. Parametric Function 

ii. Vector Function 

iii. Complex Function (Function with complex variable) 

Now you may see why most of applications of line integral are given in the form of one of these. 

Figure 33 

Figure 
36 

Figure 
35 

https://commons.wikimedia.org/w/index.php?curid=12604955
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d. Surface Integral 
Area as a Vector:  

The topic of vector areas traditionally causes considerable confusion for students. The starting point 

is the idea that we can use a vector to describe some of the properties of a surface. It's easiest to 

begin with a small (let's say rectangular) planar surface. The vector area 𝑑𝑆 we use to describe this 

surface is defined as being perpendicular to the surface and having a magnitude equal to the scalar 

area of the surface: 𝑑𝑆 = 𝑛̂ 𝑑𝑆. What is 𝑛̂? 

Let 𝑆 be a two-sided surface of any shape, such as in Figure 18. Let one side of 𝑆 be arbitrarily 

considered as the positive side (if 𝑆 is a closed surface, such as a sphere, then the outer surface is 

the positive one). A unit normal 𝑛̂ to any point of the positive side of 𝑆 is called a positive or outward 

drawn unit normal. 

In the figure, you see two 

vectors in each segments of 

the surface. One of the vectors 

is the said positive unit normal 

to each surface segment. The 

other one is in an arbitrary 

angle 𝜃 to the normal. Now I 

want to take the inner product 

of each red and blue vector 

and sum them all. This 

operation can be represented 

in the form of an integral. This, 

exactly, is a surface integral: 

∬𝐹⃗.𝑑𝑆

 

𝑆

=∬𝐹⃗. 𝑛̂ 𝑑𝑆

 

𝑆

=∬𝐹 cos𝜃 𝑑𝑆

 

𝑆

 

Here ∬  
 

𝑆
denotes integration over the whole surface 𝑆. Do you remember the way we defined Flux 

in the Divergence section? That definition clearly tells you that the surface integral of a vector field 

over a surface signifies the total flux through that surface and is a scalar quantity. 

Other types of surface integrals are ∬ 𝜙 𝑑𝑆
 

𝑆
 and ∬ 𝐹⃗ × 𝑑𝑆

 

𝑆
, which evidently are vector quantities. 

e. Volume Integral 
Say there is a closed surface enclosing a volume 𝑉 and 𝐴 is a single-valued and continuous vector 

function in that volume. Then the following denote the volume/space integral of that vector: 

∭𝐴 𝑑𝑉

 

𝑉

 

Figure 37  

http://www.sharetechnote.com/html/Calculus_Integration_Surface.html 
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f. Integral Theorems 
Why were we studying these sorts derivative operators and integrals? The reason is that there are 

some very convenient and useful relations between them. We’ll only study two of those here, but 

that’s enough for now: 

i. Gauss’s Theorem / Divergence Theorem 
The statement of the theorem is: The surface integral 

of the normal component of a single-valued, 

continuous vector function over a closed surface is 

equal to the volume integral of the divergence of the 

vector over the volume enclosed by that same closed 

surface. So, if 𝑆 is a closed surface enclosing a volume 

element 𝑉, then  

∬𝐴.𝑑𝑆
 

𝑆

=∭(∇⃗⃗⃗. 𝐴) 𝑑𝑉
 

𝑉

 

The significance? This theorem helps us convert a 

volume integral into a surface integral and vice-

versa. Consider Figure 20, which shows the 2-D 

equivalent of the Gauss’s theorem. See, using the 

theorem, we do not need to calculate the 

(cumbersome) volume integral if we can somehow 

express the integrand as the divergence of some 

vector. In terms of a vector field, as the surface 

integral depicts the total flux through the closed 

surface, and the total flux through the surface 𝐶 in 

Figure 19 is zero (exactly same number of field lines come in and go out), the divergence of the 

vector field in the enclosed volume is also zero. This is exactly what we read for a solenoidal field in 

the Divergence section, right? 

ii. Stokes’ Theorem / Curl Theorem 
The statement of the theorem is: The 

line integral of the tangential 

component of a well-defined vector 

field along a closed curve 𝐶 is equal to 

the surface integral of the normal 

component of the curl of the vector 

over the surface enclosed by the same 

curve 𝐶.  

∮𝐴. 𝑑𝑙
 

𝐶

=∬(∇⃗⃗⃗ × 𝐴). 𝑑𝑆

 

𝑆

 

The beauty here is that the theorem does not say anything about the shape of the curve! It may be 

of any shape and size, but the integral only depends on the closed curve!  

Figure 39 
https://math.stackexchange.com/questions/
2277491/divergence-theorem-approach 

Figure 38  

https://philschatz.com/calculus-
book/contents/m53982.html 

Figure 40 
https://ximera.osu.edu/mooculus/calculus3Te
xtbookBySection/shapeOfThingsToCome/shap
eOfThingsToCome/digInStokesTheorem 
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g. Solved Questions 
More problems to come… 
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Static Electricity  

(Electrostatics)-1 
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1.1 Coulomb’s Law 

Point Charge: A point charge is a hypothetical charge located at a single point in space (has no dimension). 

Coulomb's law, or Coulomb's inverse-square law, is an 

experimental law of physics that quantifies the amount of force 

between two stationary, electrically charged particles. The 

electric force between charged bodies at rest is conventionally 

called electrostatic force or Coulomb force. The quantity of 

electrostatic force between stationary charges is always described 

by Coulomb's law. The law was first published in 1785 by French 

physicist Charles-Augustin de Coulomb, and was essential to the 

development of the theory of electromagnetism, maybe even its 

starting point, because it made discussing quantity of electric 

charge possible in a meaningful way. (Source) 

https://en.wikipedia.org/wiki/Coulomb%27s_law
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Statement: The magnitude of the electric force between two stationary point charges is directly 

proportional to the magnitude of the charges and inversely proportional to the square of the distance 

between them. 

𝐹𝑣𝑎𝑐 =
1

4 𝜋𝜖0

𝑞1𝑞2
𝑟2

 = 𝑘𝑒
𝑞1𝑞2
𝑟2

, 

where 𝑘𝑒 is Coulomb's constant (𝑘𝑒 ≈ 8.9875517873681764 × 109 𝑁 𝑚2 𝐶−2), 𝑞1 and 𝑞2 are the 

signed magnitudes of the charges, and the scalar 𝑟 is the distance between the charges. The force of the 

interaction between the charges is attractive if the charges have opposite signs (i.e., 𝐹𝑣𝑎𝑐 is negative) 

and repulsive if like-signed (i.e., 𝐹𝑣𝑎𝑐 is positive).  

The physical constant 𝜖0 (pronounced as "epsilon nought" or "epsilon zero"), commonly called the 

vacuum permittivity, permittivity of free space or dielectric constant or the distributed capacitance of 

the vacuum, is the value of the absolute dielectric permittivity of classical vacuum. Its CODATA value 

is 𝜖0 =  8.8541878128(13) × 10
−12 𝐹 𝑚−1 (farads per metre), with a relative uncertainty of 1.5 ×

10−10. 

[𝜖0] =
[𝐷𝑖𝑚.𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒]2

[𝐷𝑖𝑚.𝑜𝑓 𝐹𝑜𝑟𝑐𝑒][𝐷𝑖𝑚.𝑜𝑓 𝐿𝑒𝑛𝑔𝑡ℎ]2
=

[𝐼 𝑇]2

[𝑀 𝐿 𝑇−2][𝐿]2
= [𝑀−1𝐿−3𝑇4𝐼2]  

This equation is true only for vacuum. For any other medium,  

𝐹𝑚𝑒𝑑 =
1

4 𝜋 𝜖

𝑞1𝑞2
𝑟2

 

where 𝜖 (permittivity) is a measure of the electric polarizability of a dielectric. A material with high 

permittivity polarizes more in response to an applied electric field than a material with low permittivity, 

thereby storing more energy in the electric field. In electrostatics, the permittivity plays an important 

role in determining the capacitance of a capacitor. The permittivity is often represented by the relative 

permittivity 𝐾, where 𝐾 =
𝐹𝑣𝑎𝑐

𝐹𝑚𝑒𝑑
=

𝜖

𝜖0
. This is a dimensionless quantity. 

Vector Form of Coulomb’s Law: Let’s say that there are two point charges 𝑞1and 𝑞2 placed at 

positions 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗  respectively, w.r.t. the origin 𝑂 of a Cartesian coordinate system. Position of 𝑞2 

w.r.t. 𝑞1 is 𝑟21⃗⃗ ⃗⃗ ⃗⃗ =  𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗. Now, if the relative permittivity of the medium is 𝜖𝑟, then the force on 𝑞2 

due to 𝑞1 is  

𝐹21⃗⃗⃗⃗⃗⃗⃗ =
1

4 𝜋 𝜖0 𝜖𝑟

𝑞1𝑞2

𝑟12
2  𝑟̂21, 

where 𝑟̂21 is the unit vector from 𝑞1 to 𝑞2. This is the vector 

form of Coulomb’s Law. 

Now, the force exerted on 𝑞1 due to 𝑞2 is  

𝐹12⃗⃗⃗⃗⃗⃗⃗ =
1

4 𝜋 𝜖0 𝜖𝑟

𝑞1𝑞2

𝑟12
2  𝑟̂12. 

Here, 𝑟12 = 𝑟21 = |𝑟21⃗⃗ ⃗⃗ ⃗⃗ | = |𝑟12⃗⃗⃗⃗ ⃗⃗ |.  

As 𝑟̂12 = − 𝑟̂21, 𝐹12⃗⃗ ⃗⃗ ⃗⃗ =  − 𝐹21⃗⃗⃗⃗⃗⃗⃗. From the adjacent figure, it is clear that 𝑟12 = |𝑟21⃗⃗⃗⃗⃗⃗ | = |𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗|. So 

𝐹12⃗⃗ ⃗⃗ ⃗⃗ =
1

4 𝜋 𝜖0 𝜖𝑟

𝑞1𝑞2
|𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗|

3
 (𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗). 

https://en.wikipedia.org/wiki/Committee_on_Data_for_Science_and_Technology
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This clearly is a Central Force (acts along the line joining the centers of two charged bodies).  

So 𝐹⃗ =
𝑞1𝑞2

𝑟3
 𝑟 = 𝑓(𝑟) 𝑟 . 

1.2 Law of Superposition 

The law of superposition allows Coulomb's law to be extended to 

include any number of point charges. The force acting on a point 

charge due to a system of point charges is simply the vector 

addition of the individual forces acting alone on that point charge 

due to each one of the charges. The resulting force vector is 

parallel to the electric field vector at that point, with that point 

charge removed. 

Now, the net electrostatic force 𝐹⃗ on a small test charge 𝑞0 at 

position 𝑟0⃗⃗⃗⃗ , due to a system of 𝑛 discrete charges 

(𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛) at positions 𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ , 𝑟3⃗⃗⃗⃗ , … , 𝑟𝑛⃗⃗⃗⃗  in a medium of 

relative permittivity 𝜖𝑟 is 

𝐹⃗ =  𝐹⃗1 + 𝐹⃗2 + 𝐹⃗3 +⋯+ 𝐹⃗𝑛 = ∑𝐹⃗𝑖
𝑖

=
𝑞0

4 𝜋𝜖0𝜖𝑟
 ∑

𝑞𝑖
|𝑟 − 𝑟𝑖⃗⃗⃗ |

3
(𝑟 − 𝑟𝑖⃗⃗⃗ )

𝑛

𝑖=1

 

 

1.3 Electrostatic Field 

An electric field (sometimes 

abbreviated as “𝐸” -field) 

surrounds an electric charge, and 

exerts force on other charges in 

the field, attracting or repelling 

them. These are created by 

electric charges, or by time-

varying magnetic fields. When 

created by stationary charges, it is 

called Electrostatic Field. 

Electric fields and magnetic 

fields are both manifestations of 

the electromagnetic force, one of the 4 fundamental forces (or interactions) of nature. On an atomic 

scale, it is responsible for the attractive force between the atomic nucleus and electrons that holds atoms 

together, and the forces between atoms that cause chemical bonding.  

Definition: It is defined mathematically as a vector field that associates to each point in space the 

(electrostatic or Coulomb) force per unit of charge exerted on an infinitesimal positive test charge at 

rest at that point.  

The SI unit for electric field strength is volt per meter (𝑉/𝑚), exactly equivalent to newton per coulomb 

(𝑁/𝐶) in the SI system. 1 𝑁𝐶−1 =
1

3×104
𝑑𝑦𝑛𝑒

𝑒𝑠𝑢
= 1

𝑁 𝑚

 𝐶 𝑚
= 1

𝐽

𝐶 𝑚
= 1 𝑉 𝑚−1.  

We have seen from the last section that  

𝐹⃗ =
𝑞

4 𝜋𝜖0𝜖𝑟
 ∑

𝑞𝑖
|𝑟 − 𝑟𝑖⃗⃗⃗ |

3
(𝑟 − 𝑟𝑖⃗⃗⃗ )

𝑛

𝑖=1

 

https://en.wikipedia.org/wiki/Superposition_principle
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∴ 𝐸⃗⃗ =
𝐹⃗

𝑞
=

1

4 𝜋𝜖0𝜖𝑟
 ∑

𝑞𝑖
|𝑟 − 𝑟𝑖⃗⃗⃗ |

3
(𝑟 − 𝑟𝑖⃗⃗⃗ )

𝑛

𝑖=1

 

∴ [𝐸] =
[𝐹]

[𝑞]
=

[𝑀 𝐿 𝑇−2]

[𝐼 𝑇]
= [𝑀 𝐿 𝑇−3 𝐼−1]. 

1.4 Curl and Divergence of 𝐸⃗⃗ 

1.4.1 Conservative Force 

Definition: A conservative force is a force with the property that the total 

work done in moving a particle between two points is independent of the 

taken path. Gravitational force is an example of a conservative force, while 

frictional force is an example of a non-conservative force. 

If a particle travels in a closed loop, the total work done (the sum of the force 

acting along the path multiplied by the displacement) by a conservative force 

is zero.  

𝑊 = ∮𝐹𝑐𝑜𝑛𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ . 𝑑𝑟 = 0 

Now, ∮ 𝐹⃗ . 𝑑𝑟 = ∬(∇⃗⃗⃗ × 𝐹⃗). 𝑑𝑠   (Stokes’ Theorem). 

∴ (∇⃗⃗⃗ × 𝐹⃗) = 0 for conservative forces.  

1.4.2 ∇⃗⃗⃗ × 𝐸⃗⃗ and ∇⃗⃗⃗. 𝐸⃗⃗ 

Let’s check whether Electrostatic force is conservative or not: 

𝐹⃗ = 𝑓(𝑟) 𝑟 = 𝑓(𝑟)(𝑖 ̂𝑥 + 𝑗̂ 𝑦 + 𝑘̂ 𝑧) = 𝑞1𝑞2(𝑖̂
𝑥

𝑟3
+ 𝑗̂

𝑥

𝑟3
+ 𝑘̂

𝑧

𝑟3
) 

∴ ∇⃗⃗⃗ × 𝐹⃗ = 𝑞1𝑞2 |

|

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑥

𝑟3
𝑦

𝑟3
𝑧

𝑟3

|

|
= 0 

Hence, electrostatic force is conservative as well as a central force (from earlier section). A central 

force is conservative if and only if it is spherically symmetric. This also means that  

∇⃗⃗⃗ × 𝐸⃗⃗ = 0 

A conservative force depends only on the position of the object. If a force is conservative, it is possible 

to assign a numerical value for the potential at any point and conversely, when an object moves from 

one location to another, the force changes the potential energy of the object by an amount that does not 

depend on the path taken, contributing to the mechanical energy and the overall conservation of energy. 

If the force is not conservative, then defining a scalar potential is not possible, because taking different 

paths would lead to conflicting potential differences between the start and end points. 

𝐹⃗ = −∇⃗⃗⃗𝜙 
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For a point charge, 

∫ 𝐹⃗. 𝑑𝑟

𝐵

𝐴

=
𝑞

4𝜋𝜖0
∫
1

𝑟3
(𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂). (𝑑𝑥 𝑖̂ + 𝑑𝑦 𝑗̂ + 𝑑𝑧 𝑘̂)

𝐵

𝐴

=
𝑞

4𝜋𝜖0
∫
1

𝑟3
(𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 𝑧𝑑𝑧)

𝐵

𝐴

=
𝑞

4𝜋𝜖0
∫
𝑟𝑑𝑟

𝑟3

𝐵

𝐴

=
𝑞

4𝜋𝜖0
∫
𝑑𝑟

𝑟2

𝐵

𝐴

=
𝑞

4𝜋𝜖0
[
1

𝑟𝐴
−
1

𝑟𝐵
] 

Now, 

∇⃗⃗⃗. 𝐸⃗⃗ =
𝑞

4𝜋𝜖0
(𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
) . [𝑖̂

𝑥

𝑟3
+ 𝑗̂

𝑦

𝑟3
+ 𝑘̂

𝑧

𝑟3
] =

𝑞

4𝜋𝜖0
[
𝜕

𝜕𝑥
(
𝑥

𝑟3
) +

𝜕

𝜕𝑦
(
𝑦

𝑟3
) +

𝜕

𝜕𝑧
(
𝑧

𝑟3
)]

=
𝑞

4𝜋𝜖0
[
𝜕

𝜕𝑥
(

𝑥

(𝑥2 + 𝑦2 + 𝑧2)
3
2

)+
𝜕

𝜕𝑦
(

𝑦

(𝑥2 + 𝑦2 + 𝑧2)
3
2

) +
𝜕

𝜕𝑧
(

𝑧

(𝑥2 + 𝑦2 + 𝑧2)
3
2

)]

=
𝑞

4𝜋𝜖0
[
3

𝑟3
−
3

𝑟3
] = 0                               (𝑥 ≠ 0, 𝑦 ≠ 0, 𝑧 ≠ 0) 

This is true for all points in space other than the position of the charge (𝑟 = 0). There 𝐸⃗⃗ → ∞, hence ∇⃗⃗⃗. 𝐸⃗⃗ → 0. 

Let’s apply the Divergence Theorem to this: 

∭(∇⃗⃗⃗. 𝐸⃗⃗) 𝑑3𝑟 = ∮ 𝐸⃗⃗. 𝑑𝑠 =
1

4𝜋𝜖0
∫(

𝑞

𝑟2
𝑟̂) . (𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 𝑟̂) =

𝑞

𝜖0
=
1

𝜖0
∭𝜌 𝑑3𝑟 𝛿3(𝑟) 

⇒ ∇⃗⃗⃗. 𝐸⃗⃗ =
𝜌

𝜖0
 𝛿3(𝑟) 

Here, 𝜌 is charge density and ∫ 𝛿3(𝑟)𝑑3𝑟 = 1. 

Remember, 𝛿3(𝑟) →  {
∞,   𝑟 = 0
0,   𝑟 ≠ 0

. 

1.5 Electrostatic Flux 

1.5.1 Definition 

In electromagnetism, electric flux is the measure of the electric field through a given surface, although 

an electric field in itself cannot flow. It is a way of describing the electric field strength at any distance 

from the charge causing the field. An electric “charge”, such as a single electron in space, has an electric 

field surrounding it. In pictorial form, this electric field is shown as a dot, the charge, radiating “lines 

of flux”. These are called Gauss lines. The density of these lines corresponds to the electric field 

strength, which could also be called the electric flux density: the number of “lines” per unit area. Electric 

flux is proportional to the total number of electric field lines going through a surface. For simplicity in 

calculations, it is often convenient to consider a surface perpendicular to the flux lines.  

Φ = 𝐸⃗⃗. 𝑆 = ∬ 𝐸⃗⃗. 𝑑𝑠

 

𝑆

 

If the electric field is uniform, the electric flux passing through a surface of vector area 𝑆 is 

Φ = 𝐸⃗⃗. 𝑆 = 𝑆 𝐸 𝑐𝑜𝑠𝜃 

𝐸 𝑐𝑜𝑠𝜃 is the perpendicular component of the electric field. 



 

 

39 

MATHEMATICAL METHODSANDELECTRODYNAMICS | Gen-Sem-1 (CBCS) 

Dimension of flux: [Φ] = [𝑀 𝐿3𝑇−3 𝐼−1] 

1.5.2 Numerical Examples 

I. Two point charges of +5𝐶 and +15𝐶 are at points (2, −4, 3)𝑚 and (−3, 2, 1)𝑚 

respectively. Find the force on the charge +15𝐶. 
Answer:  
 

𝑞1 = +5𝐶;   𝑞2 = +15𝐶 

𝑟1⃗⃗⃗ ⃗ = 2 𝑖̂ − 4 𝑗̂ + 3 𝑘̂;  𝑟2⃗⃗⃗⃗ = −3 𝑖̂ + 2 𝑗̂ + 𝑘̂ 

∴ 𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗ = −5 𝑖̂ + 6 𝑗̂ − 2 𝑘̂  

⇒ |𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗| = √(−5)
2 + 62 + (−2)2 𝑚 = √65 𝑚  

Hence, the force on the +15𝐶 charge is 

𝐹21⃗⃗⃗⃗⃗⃗⃗ =
1

4𝜋𝜀0

5 × 15

653/2
 (−5 𝑖̂ + 6 𝑗̂ − 2 𝑘̂) 𝑁 =

9 × 109 × 5 × 15

65
3
2

(−5 𝑖̂ + 6 𝑗̂ − 2 𝑘̂) 𝑁

= 1.288 × 109 (−5 𝑖̂ + 6 𝑗̂ − 2 𝑘̂) 𝑁 
 

II. Show that the electric field 𝐸⃗⃗ = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ is conservative. 
Answer: 

 

∇⃗⃗⃗ × 𝐸⃗⃗ = ||

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑥 𝑦 𝑧

|| = 0 

Hence, the field 𝐸⃗⃗ is conservative. 

 

III. If the field intensity at any point (𝑥, 𝑦, 𝑧) is 𝐸⃗⃗ = 6𝑥𝑦 𝑖̂ + (3𝑥2 − 3𝑦2) 𝑗̂ + 4𝑧 𝑘̂, what 

should be the amount of work done to take a positive charge from the origin to the point 
(𝑥1, 𝑦1, 𝑧1)? 
Answer: 
 

Work done  

= ∫ 𝐸⃗⃗. 𝑑𝑟

(𝑥1,𝑦1,𝑧1)

(0,0,0)

= ∫ 6𝑥𝑦 𝑑𝑥 + (3𝑥2 − 3𝑦2) 𝑑𝑦 + 4𝑧 𝑑𝑧

(𝑥1,𝑦1,𝑧1)

(0,0,0)

 

= [3𝑥2𝑦 + 3𝑥2𝑦 − 𝑦3 + 2𝑧2](0,0,0)
(𝑥1,𝑦1,𝑧1) = 6𝑥1

2𝑦1 − 𝑦1
3 + 2𝑧1

2  

 

IV. Find the electric flux through an area of 20 units in the 𝑌𝑍 plane, for the uniform electric 

field 𝐸⃗⃗ = 6 𝑖̂ + 3 𝑗̂ + 4 𝑘̂  
Answer: 

 

As the field is uniform, electric flux 

Φ𝐸 =∬𝐸⃗⃗. 𝑑𝑠 = 𝐸⃗⃗. 𝑠 

Now, 𝑠 = 20 𝑖 ̂𝑠𝑞 𝑢𝑛𝑖𝑡𝑠 

Hence, Φ𝐸 = (6 𝑖̂ + 3 𝑗̂ + 4 𝑘̂). (20 𝑖)̂ = 120 𝑢𝑛𝑖𝑡𝑠  
 

V. There is a charge of 17.7𝜇𝐶 at the center of a spherical plane of radius 5 𝑐𝑚. What is the 

amount of the electric flux through the spherical plane? 
Answer: 
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Area of a sphere of radius 𝑟 = 4𝜋𝑟2. Here |𝐸⃗⃗| =
𝑞

4𝜋𝜀0𝑟
2 . 

Hence, Φ𝐸 = 𝐸⃗⃗. 𝑑𝑠 =
𝑞

4𝜋𝜀0𝑟
2 × 4𝜋𝑟

2 =
𝑞

𝜀0
=

17.7×10−6𝐶

8.854×10−12𝐶2𝑁−1𝑚−2 = 2 × 10
6𝑁𝑚2𝐶−1 

We see that the flux is independent of the radius of the sphere. This is a consequence of the 

Coulomb’s inverse-square law. 

 

VI. Two identical particles of mass 𝑚 and charge 𝑞 are dangling from the same point with 

two identical inextensible strings of length 𝑙. If each particle makes an angle 𝜃 with 

vertical, show that 4𝑚𝑔𝑙2 𝑠𝑖𝑛3 𝜃 = 𝑞2 𝑐𝑜𝑠 𝜃 
Answer: 

 

The adjacent figure depicts the stated problem. 

According to the figure, 𝑇 sin 𝜃 = 𝐹 =
𝑞2

(𝐵𝐴)2
;  

Again, 𝐵𝐴 = 2𝑙 sin 𝜃 

⇒ 𝑇 sin3 𝜃 =
𝑞2

4𝑙2
;  

𝑇 cos 𝜃 = 𝑚𝑔  

We get, after removing 𝑇, 

  4𝑚𝑔𝑙2 𝑠𝑖𝑛3 𝜃 = 𝑞2 𝑐𝑜𝑠 𝜃 
 

VII. Infinite number of point charges, each with charge 𝑞, are kept on the 𝑥-axis at points 𝑥 =
1, 2, 4, 8, … etc. what would be the field intensity at 𝑥 = 0 for these charges? If the 

charges are alternatively positive and negative, what would be the field then?  
Answer: 

 

𝐸 =
1

4𝜋𝜀0
(
𝑞

12
+
𝑞

22
+
𝑞

42
+
𝑞

82
+⋯∞) =

𝑞

4𝜋𝜀0
∑(2𝑛)−2
∞

𝑛=0

=
𝑞

4𝜋𝜀0
∑(

1

4
)
𝑛∞

𝑛=0

 

From the closed-form formula of infinite geometric series, we know, 

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + 𝑎𝑟4 +⋯∞ = ∑𝑎 𝑟𝑛
∞

𝑛=0

=
𝑎

1 − 𝑟
 , for |𝑟| < 1 

⇒ 1 + 𝑟 + 𝑟2 + 𝑟3 + 𝑟4 +⋯∞ =
1

1 − 𝑟
  

Hence 

𝐸 =
𝑞

4𝜋𝜀0
×

1

1−
1

4

=
𝑞

3𝜋𝜀0
  (in the direction of negative 𝑥 axis). 

In the second case,  

𝐸 =
1

4𝜋𝜀0
(
𝑞

12
−
𝑞

22
+
𝑞

42
−
𝑞

82
+⋯∞) =

𝑞

4𝜋𝜀0
[∑ (

1

42
)
𝑛∞

𝑛=0

−∑
1

22
 (
1

42
)
𝑛∞

𝑛=0

]

=
𝑞

4𝜋𝜀0
[

1

1 −
1
42

−

1
22

1 −
1
42

] =
𝑞

4𝜋𝜀0
[
16

15
−
4

15
] =

𝑞

5𝜋𝜀0
 . 

If the closest charge is negative, then the direction of the field would be to the positive 𝑥 axis. 

 

VIII. A square area parallel to the 𝑌𝑍 plane is kept inside an electric field of intensity (2 𝑖̂ +

3 𝑗̂ + 5 𝑘̂) 𝑁𝐶−1. The flux through the square is measured to be 8𝑁𝑚2𝐶−1. What is the 

length of one side of the square? 
Answer: 
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𝐸⃗⃗ = (2 𝑖̂ + 3 𝑗̂ + 5 𝑘̂) 𝑁𝐶−1 ,  𝑠 = 𝑎2 𝑖 ̂𝑚2  (𝑎 = length of a side of the square) 

Hence, 𝐸⃗⃗. 𝑠 = 2𝑎2𝑁𝑚2𝐶−1 = 8 𝑁𝑚2𝐶−1 

⇒ 2𝑎2 = 8 ⇒ 𝑎 = 2  

i.e., length of a side of the square = 2 𝑚 

 

IX. Two point charges of magnitudes +100𝜇𝐶−1 and −100𝜇𝐶−1 are kept at two points 𝐴 

and 𝐵 of an equilateral 𝐴𝐵𝐶 with length of each side = 10 𝑐𝑚. Find the Direction and 

magnitude of the electric field at point 𝐶 due to these charges. 
Answer: 

 

𝐹1 =
𝑞

4𝜋𝜀0𝑟
2 =

100×10−6×9×109

(10×10−2)2
= 9 × 107𝑁  (along 𝐴𝐶⃗⃗⃗⃗⃗⃗ ) 

𝐹2 =
100×10−6×9×109

(10×10−2)2
= 9 × 107𝑁  (along 𝐶𝐵⃗⃗⃗⃗⃗⃗ ) 

As 𝐹1 = 𝐹2 , their resultant bisects the angle (180° − ∠𝐵𝐶𝐴) = (180° − 60°) = 120° . 

Hence,  the resultant 𝐹 = 𝐹1 cos
120°

2
 + 𝐹2 cos

120°

2
 = 9 × 107 × (

1

2
+
1

2
) = 9 × 107 𝑁𝐶−1 

The resultant will be directed parallel to 𝐴𝐵, in the direction from 𝐴 to 𝐵. 

1.6 Gauss’s Theorem in Electrostatics: 

1.6.1 Description 

Gauss’s law/theorem, aka Gauss’s flux 

theorem, relates a distribution of electric 

charge to the resulting electric field. First 

formulated by Joseph-Louis Lagrange (1773) 

and then by Carl Friedrich Gauss (1813), it is 

now one of Maxwell’s four basic equations 

of classical electrodynamics.  

Gauss’s law can be used to derive Coulomb’s 

law, and vice versa. There are two forms of 

the same law: the integral form and the 

differential form. These two forms are related 

through the Divergence Theorem. In words, 

the law states that:  

 

The net electric flux through any hypothetical closed surface is equal to 
1

𝜀0
 times the net electric 

charge within that closed surface, where 𝜀0 is the absolute dielectric permittivity of the classical 

vacuum. 

A closed surface is a surface that is compact and without boundary. An easy way to remember a 

closed surface is that if one wants to go from one side of the surface to the other side, one has to pass 

through the surface (there’s no way around it). 

The flux here is proportional to the enclosed electric charge, irrespective of how that charge is 

distributed. Even though the law alone is insufficient to determine the electric field across a surface 

enclosing any charge distribution, this may be possible in cases of uniform fields – the uniformity 

demanded by some symmetry. Where no such symmetry exists, Gauss’s law can be used in its 

differential form. 

Figure 41  Electric flux through an arbitrary surface is 
proportional to the total charge enclosed by the surface. 
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Proof: Let us take a closed surface 𝑆 of any 

shape. There is a charge 𝑞 at the point 𝑂 inside 

this surface. Let us now consider an infinitesimal 

part of the surface 𝑑𝑆 around the point 𝑃, where 

𝑃𝑁 is perpendicular to 𝑑𝑆. The electric field at 𝑃 

due to 𝑞 at 𝑂 is 𝐸⃗⃗ =
1

4𝜋𝜀0
.
𝑞

𝑟2
𝑟̂ and it acts 

along 𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ . The solid angle subtended at point 𝑂 

by the area 𝑑𝑆 is 𝑑Ω. 𝜃 is the angle between 𝑂𝑁⃗⃗⃗⃗⃗⃗⃗ 

and 𝑂𝑃⃗⃗⃗⃗ ⃗⃗ , i.e. the direction of the electric field at 𝑃. 

Hence, the electric flux passing through the area 

𝑑𝑆 is 

𝑑𝜙 = 𝐸⃗⃗. 𝑑𝑆 = (
1

4𝜋𝜀0
.
𝑞

𝑟2
𝑟̂) . (𝑛̂𝑑𝑆)

=
1

4𝜋𝜀0
.
𝑞

𝑟2
 (𝑟̂. 𝑛̂)

=
1

4𝜋𝜀0
.
𝑞

𝑟2
 𝑑𝑆 cos𝜃 

[∵ 𝑟̂. 𝑛̂ = cos 𝜃]  
Hence, total flux through the closed surface 𝑆, 

𝜙 =∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=∯
1

4𝜋𝜀0
.
𝑞

𝑟2
 𝑑𝑆 cos𝜃

 

𝑆

=
𝑞

4𝜋𝜀0
∯

𝑑𝑆 cos 𝜃

𝑟2

 

𝑆

=
𝑞

4𝜋𝜀0
∯𝑑Ω

 

𝑆

=
𝑞

4𝜋𝜀0
× 4𝜋 

=
𝑞

𝜀0
              [∵ ∯𝑑Ω

 

𝑆

= 4𝜋] 

Hence, the total flux passing through a closed surface enclosing a charge 𝑞 is 
1

𝜀0
 times the amount of 

charge, i.e. 𝑞. If there are multiple point charges, the total flux would be proportional to the algebraic 

sum of those charges: 

Φ𝐸 =∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗ =
1

𝜀0
∑𝑞𝑖
𝑖

 

Some notes about Gauss’s theorem: 

1. For an electric dipole, ∑ 𝑞𝑖𝑖 = 0, and hence, the flux due to a electric dipole = 0. 

2. This theorem tells us that if there is no charge within the closed surface then flux through that 

surface is zero. Zero flux does not always indicate zero electric field. For example, though 

flux due to a dipole is zero, electric field due to that is non-zero. 

3. We will see later that we can calculate the electric field at any point using Gauss’s theorem, if 

only the charge distribution has some kind symmetry to it. This is not possible from 

Coulomb’s law. 

1.6.2 Differential Form 

If 𝜌 is the volume charge density at a region of space, then the flux around a closed surface 𝑆 

enclosing the charged volume 𝑉 is, from Gauss’s theorem, 
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Φ =∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=
𝑞

𝜀0
=
1

𝜀0
∭𝜌 𝑑3𝑟

𝑉

 . 

Now, from divergence theorem, ∯ 𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗
 

𝑆
=∭ (∇⃗⃗⃗. 𝐸⃗⃗) 𝑑3𝑟

𝑉
. 

Hence, ∭ (∇⃗⃗⃗. 𝐸⃗⃗ −
𝜌

𝜀0
)  𝑑3𝑟

𝑉
= 0 . This is true for any arbitrary 𝑉 and S. So, we can write, 

∇⃗⃗⃗. 𝐸⃗⃗ =
𝜌

𝜀0
 

This is the differential form of Gauss’s theorem. In words, the divergence of an electric field at any 

point is equal to the ratio of the volume charge density at that point and the permittivity of vacuum. 

This is also known as the first of the Maxwell’s Equations of Electrodynamics. 

If we define 𝐷⃗⃗⃗ = 𝜀0𝐸⃗⃗, the law becomes ∇⃗⃗⃗. 𝐷⃗⃗⃗ = 𝜌. 

As the electric field 𝐸⃗⃗ is conservative, ∇⃗⃗⃗ × 𝐸⃗⃗ = 0. We can thus write 𝐸⃗⃗ as the gradient of a scalar 

potential 𝜙: 𝐸⃗⃗ = −∇⃗⃗⃗𝜙. 

Hence, ∇⃗⃗⃗. 𝐸⃗⃗ =
𝜌

𝜀0
⇒ ∇⃗⃗⃗. ∇⃗⃗⃗𝜙 = −

𝜌

𝜀0
. Or, 

∇2𝜙 = −
𝜌

𝜀0
 

This equation is known as the Poisson’s equation. For a region which is electric charge free, this 

becomes ∇2𝜙 = 0: this is known as Laplace’s equation. 

1.6.3 Coulomb’s Law from Gauss’s Theorem 

Coulomb’s law cannot be derived using only Gauss’s law, 

since Gauss's law does not give any information regarding ∇⃗⃗⃗ ×

𝐸⃗⃗. However, Coulomb’s law is easy to prove from Gauss’s law 

in presence of additional assumption that the electric field from 

a point charge is spherically symmetric (this assumption, like 

Coulomb’s law itself, is exactly true if the charge is stationary, 

and approximately true if the charge is in motion). 

Taking 𝑆 in the integral form of Gauss’s law to be a spherical 

surface of radius 𝑟, centered at the point charge 𝑞, we have, 

∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=
𝑞

𝜀0
⇒ 𝐸∯𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=
𝑞

𝜀0
 

Here 𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗ = 𝐸 𝑑𝑆, as the magnitude of 𝐸⃗⃗ is constant on every 

point of the spherical surface, due to symmetry and both 𝐸⃗⃗ and 𝑑𝑆⃗⃗⃗⃗⃗ are directed radially outward, i.e., 

have the same direction.  

As ∯ 𝑑𝑆⃗⃗⃗⃗⃗
 

𝑆
= 4𝜋𝑟2, 

𝐸 × 4𝜋𝑟2 =
𝑞

𝜀0
⇒ 𝐸 =

𝑞

4𝜋𝜀0𝑟
2
 

Now, if we put another point charge 𝑞0 at the same distance 𝑟 from 𝑞, the force acting on 𝑞0 due to 𝑞 

is, 
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𝐹 = 𝐸 𝑞0 =
𝑞 𝑞0
4𝜋𝜀0𝑟

2
 

1.6.4 Applications of Gauss’s Theorem 

I. Electric field due to a point charge: The description is already there in the last subsection. 

𝐸⃗⃗ = 𝐸𝑟̂ =
𝑞

4𝜋𝜀0𝑟
2
𝑟̂ =

𝑞 𝑟

4𝜋𝜀0𝑟
3
 

II. Electric Field due to a uniformly charged long straight wire: 

As the wire is uniformly charged, let’s say that the charge at 

each unit length of the wire, i.e., the linear charge density is 𝜆. 

The job is to calculate the electric field due to this wire at a 

distance 𝑟 from the wire. If we imagine a cylindrical Gaussian 

surface of length ℎ around the straight wire, we find that due 

to cylindrical symmetry of the wire, electric flux lines will 

only pass through the curved Gaussian surface. Hence, the 

total electric flux through the surface: 

∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

= 𝐸 (2𝜋𝑟ℎ) 

Now, the total charge enclosed by the Gaussian surface 

is 𝜆ℎ. From Gauss’s theorem, 

𝐸 (2𝜋𝑟ℎ) =
𝜆ℎ

𝜀0
⇒ 𝐸 =

1

4𝜋𝜀0

2𝜆

𝑟
 

𝐸⃗⃗ =
1

4𝜋𝜀0

2𝜆

𝑟
𝑟̂ 

The direction of 𝐸⃗⃗ is radially outward.  

III. Electric Field due to a uniformly charged spherical shell: Let’s say that we have a (very) thin 

spherical shell of radius 𝑅 and center 𝑂. The surface of the 

spherical shell is uniformly charged with surface-charge-

density 𝜎. So, the total charge-content of the shell is 𝑞 = 4𝜋𝑅2𝜎. 

The job is to find electric field due to 𝑞 at the point 𝑃 at a distance 

𝑟 from the center of the shell 𝑂. There are three cases here, 

depending on the relative sizes of 𝑅 and 𝑟. The figure on the left 

shows the change in the electric field with change in 𝑟. The 

reasons for this particular nature of 𝐸 vs. 𝑟 is discussed below. 

 

 

 

a. At a point outside the shell (𝑟 > 𝑅): If we imagine 

a spherical Gaussian surface of radius 𝑟 with 

center at 𝑂, then the electric field at any point on 

this surface is same and the field lines cut the 

surface at right angle. Hence, the total electric flus 

through this surface, ∯ 𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗
 

𝑆
= 𝐸(4𝜋𝑟2). From 

Gauss’s theorem, 

𝐸(4𝜋𝑟2) =
𝑞

𝜀0
=
4𝜋𝑅2𝜎

𝜀0
⇒ 𝐸 =

𝑅2𝜎

𝑟2𝜀0
 

⇒ 𝐸⃗⃗ =
𝑅2𝜎

𝜀0𝑟
2
𝑟̂ 
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b. At a point on the surface of the shell (𝑟 = 𝑅): Extending the 

relations from the above case,  

𝐸⃗⃗ =
𝑅2𝜎

𝜀0𝑟
2
𝑟̂ =

𝜎

𝜀0
𝑟̂ 

This is consistent with the observation that the electric field is 

spherically symmetric. 

c. At a point inside the shell (𝑟 < 𝑅): In this case, the Gaussian 

surface lies completely within the shell. The whole amount of charge 

now is completely outside the Gaussian surface (as it resides on the 

surface). So, the charge enclosed by the Gaussian surface, 𝑞 = 0. So, 

from Gauss’s theorem, 

∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=
𝑞

𝜀0
= 0 

IV. Electric field due to a uniformly charged infinite plane surface:  
 

Before we get into this, let us clarify something. It is a common practice in physics community to call what we are 

going to encounter here as a ‘Gaussian 

Pill-box’. A traditional pill-box may look 

like the one on the right side, or it may be 

circular, hexagonal or any other shape. 

That is not important for us. The only 

important general characteristic of a pill-

box for us is that its height is much 

smaller than the area of its lid. That is it. 

Sometimes we will consider a closed 

Gaussian surface shaped like a pill-box, half-embedded in an actual surface, containing electric charge, like in the 

figure on the left. 
 

In our present problem, we imagine an infinite 

charged flat plane with surface-charge-

density 𝜎. We draw an (imaginary) Gaussian 

pill-box at any place. The surface area of the 

pill-box is 𝐴, and the depth is 2𝑟. For ease of 

understanding, consider the surface 𝐴 to be a 

square. Remember, following the definition of 

a pill-box, 𝑟 ≪ √𝐴. As we see in the figure on 

the left, as the infinite plane is uniformly 

charged, all the field lines (𝐸⃗⃗) extend 

perpendicularly on both sides of the 

plane. In the figure on the right, we 

now zoom in to the pill-box and 

deliberately blow-up/stretch the pill-

box for our understanding. It should 

be clear that the total charge enclosed 

by the whole pill-box is due to the 

cross-section of the plane by the pill-

box, i.e., 𝑞 = 𝜎𝐴. Using Gauss’s theorem, we can write, 

∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=
𝑞

𝜀0
=
𝜎𝐴

𝜀0
 

For all surfaces of the pill-box that are perpendicular to the infinite plane, 𝐸⃗⃗. Δ𝑆⃗⃗ ⃗⃗⃗ = 0, where 

Δ𝑆⃗⃗ ⃗⃗⃗ is the area of any of those faces (area-vector of an area is normal to the area itself; hence 

𝐸⃗⃗ ⊥ Δ𝑆⃗⃗ ⃗⃗⃗). If we call the parallel areas, respectively on the right and on the left as 𝑆1 and 𝑆2, 

and the right side as positive direction, then 𝑆1 = −𝑆2 = 𝐴. Thus, Gauss’s theorem becomes, 
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∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=∬𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆1

+∬(−𝐸⃗⃗). 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆2

+ 4∬𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

Δ𝑆

=
𝜎𝐴

𝜀0
 

⇒ 𝐸⃗⃗. 𝐴 + (−𝐸⃗⃗). (−𝐴) + 4 × 0 =
𝜎𝐴

𝜀0
⇒ 2|𝐸⃗⃗|𝐴 =

𝜎𝐴

𝜀0
 

⇒ |𝐸⃗⃗| =
𝜎

2𝜀0
⇒ 𝐸⃗⃗ =

𝜎

2𝜀0
𝑛̂ 

where 𝑛̂ is the unit-normal vector of the infinite plane. 

V. Electric field due to a uniformly charged solid sphere:  

Let us consider that the solid sphere in consideration is uniformly charged, with volume 

charge-density 𝜌. Just like the case of the spherical shell, if the 

point 𝑃 at which we measure the electric field is at a distance 𝑟 

from the center of the solid sphere and the radius of the sphere is 𝑎, 

then we have three case, just as earlier, 

a. 𝒓 > 𝒂: Here 𝑃 is outside the sphere, at a distance 𝑟. The 

electric field due to the sphere points radially outward (i.e. 

perpendicular to the Gaussian surface at every point), and from 

spherical symmetry, is of constant magnitude on every point of the 

surface at 𝑟. So, the total amount of flux passing through the 

Gaussian surface, 

Φ𝐸 =∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

= |𝐸⃗⃗|∯𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

= 4𝜋𝑟2|𝐸⃗⃗| 

⇒ 4𝜋𝑟2|𝐸⃗⃗| =
𝑞

𝜀0
=
1

𝜀0
×
4

3
𝜋𝑎3𝜌 

⇒ |𝐸⃗⃗| =
𝜌

3𝜀0

𝑎3

𝑟2
,   (radially outward) 

Or, in other words, outside the sphere, 𝐸 ∝ 1/𝑟2. 

b. 𝒓 = 𝒂: With a simple extension of the case above, it is 

trivial to show that when 𝑟 = 𝑎, |𝐸⃗⃗| =
𝜌

3𝜀0
𝑎. 

c. 𝒓 < 𝒂: Just like in the case of the spherical shell, we 

draw the Gaussian surface inside the sphere. Now, the 

charge enclosed by the Gaussian surface is 

𝑞′ =
4

3
𝜋𝑟3𝜌.  

Using 𝑞 =
4

3
𝜋𝑎3𝜌, we see 

that 𝑞′ =
𝑞𝑟3

𝑎3
.  

Now, from Gauss’s theorem, 

∯𝐸⃗⃗. 𝑑𝑆⃗⃗⃗⃗⃗

 

𝑆

=
𝑞′

𝜀0
=
𝑞𝑟3

𝜀0𝑎
3
⇒ 4𝜋𝑟2|𝐸⃗⃗|

=
1

𝜀0

4

3
𝜋𝑟3𝜌 

⇒ |𝐸⃗⃗| =
𝜌𝑟

3𝜀0
 

Or, in other words, inside the sphere, 𝐸 ∝ 𝑟. 
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1.7 Electric Potential: 

1.7.1 Potential as line integral of Field: 

If the electric field at a point is 𝐸⃗⃗, then the force on a test charge 𝑞0 due to that electric field is 𝐹⃗ =

𝑞0𝐸⃗⃗. If the charge moves by an infinitesimal amount of 𝑑𝑙⃗⃗⃗⃗  because of the action of that force, then the 

work done by the electric field on that charge, 𝑑𝑊 = 𝐹⃗. 𝑑𝑙⃗⃗⃗⃗ = 𝑞0𝐸⃗⃗. 𝑑𝑙⃗⃗⃗⃗ . Work done by the field to 

displace the charge from point 𝐴 to point 𝐵 is 𝑊 = ∫ 𝑑𝑊
𝐵

𝐴
= 𝑞0 ∫ 𝐸⃗⃗. 𝑑𝑙⃗⃗⃗⃗

𝐵

𝐴
. Hence the work done per 

unit charge by the electric field is 
𝑊

𝑞0
= ∫ 𝐸⃗⃗. 𝑑𝑙⃗⃗⃗⃗

𝐵

𝐴
= the line integral of the electric field from point 𝐴 to 

point 𝐵. 

∴The work done by an electric field form one point to another is equal to the line integral of the 

electric field between those two points. 

We know that a static electric field is conservative, i.e., ∇⃗⃗⃗ × 𝐸⃗⃗ = 0. As ∇⃗⃗⃗ × ∇⃗⃗⃗𝜙 = 0 is an identity for 

any scalar function 𝜙, we can write 𝐸⃗⃗ as a gradient of a scalar function, i.e., 𝐸⃗⃗ = −∇⃗⃗⃗𝜙. The negative 

sign is there so that we can define the potential with a correct sign. We will soon understand the 

meaning of the negative sign.  

Now, if 𝑑𝑟⃗⃗⃗⃗⃗ = (𝑑𝑥 𝑖̂ + 𝑑𝑦 𝑗̂ + 𝑑𝑧 𝑘̂) and ∇⃗⃗⃗𝜙 = (
𝜕𝜙

𝜕𝑥
𝑖̂ +

𝜕𝜙

𝜕𝑦
𝑗̂ +

𝜕𝜙

𝜕𝑧
𝑘̂), 

∴ ∫ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗

𝐵

𝐴

= −∫ ∇⃗⃗⃗𝜙. 𝑑𝑟⃗⃗⃗⃗⃗

𝐵

𝐴

= −∫ (
𝜕𝜙

𝜕𝑥
𝑖̂ +

𝜕𝜙

𝜕𝑦
𝑗̂ +

𝜕𝜙

𝜕𝑧
𝑘̂) . (𝑑𝑥 𝑖̂ + 𝑑𝑦 𝑗̂ + 𝑑𝑧 𝑘̂)

𝐵

𝐴

= −∫ (
𝜕𝜙

𝜕𝑥
𝑑𝑥 +

𝜕𝜙

𝜕𝑦
𝑑𝑦 +

𝜕𝜙

𝜕𝑧
𝑑𝑧)

𝐵

𝐴

= −∫ 𝑑𝜙

𝐵

𝐴

 

⇒ ∫ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗

𝐵

𝐴

= 𝜙𝐴 − 𝜙𝐵 

Where 𝜙𝑃 = electric potential of the electric field at a point 𝑃. Thus, the line 

integral of a static electric field depends only on the end points of the path of 

integration and is independent of the path itself. 

For a closed path, as shown in the figure (left), we can see that, 

∮ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗ = ∫ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗

𝐵

𝐴
(along 𝐴𝐶𝐵)

+ ∫ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗

𝐴

𝐵
(along 𝐵𝐷𝐴)

= 𝜙𝐴 − 𝜙𝐵 + 𝜙𝐵 −𝜙𝐴 = 0 

The next obvious question would be, what exactly is this potential? Think about gravity. Unlike the 

force between a positive charge and another positive test charge, gravity is always attractive. If we 

release a ball from point 𝐴 (a higher point from ground), gravity acts on it and brings it down to (a 

lower point) 𝐵. The work done by gravitational field is then the different between the gravitational 

potentials between those points (𝜙𝐴
𝑔
− 𝜙𝐵

𝑔
). To raise a mass against gravity (from 𝐵 to 𝐴), we need to 

work against gravitational field. We can, in principle, define a zero potential plane (most cases, the 

ground) relative to which the potential for every higher point is defined. 

For a repulsive force (such as between two positive charges), assume that the source charge/charge 

distribution of the electric field is already there. Now to bring another positive test charge closer to it 

(from 𝐵 to 𝐴), we have to work against the electric field. But didn’t we have to work already against 
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the field to bring that test charge to the point 𝐵? Sure! That is why point B also has a potential. It 

seems common sense that there will no effect of the field at infinity (∞), and we can use infinity as 

our zero potential point. We can then define the potential of any electric field of any point as the work 

done to bring a unit charge from infinity to that point. From earlier, work done by the field,  

∫ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗

∞

𝑟

= 𝜙𝑟 − 0 = 𝜙𝑟 

⇒ 𝜙𝑟 = − ∫ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗

𝑟

∞

 

The negative sign denotes that here, work is done against the electric field to bring the charge from 

infinity to 𝑟. 

Similarly, the potential difference between two points, 𝜙𝐵 − 𝜙𝐴 = −∫ 𝐸⃗⃗. 𝑑𝑟⃗⃗⃗⃗⃗
𝐵

𝐴
 

Dimension of electric potential = 
dim.of work

dim.of charge
=

[𝑀𝐿2𝑇−2]

[𝐼𝑇]
= [𝑀𝐿2𝑇−3𝐼−1]  

 

 

 

 

 

 

 

 

 

 

 

 

 

More Material:  

1) Fact Factor Site 

2) Dimensions of S.I units and quantities. 

3) Bozeman Science (Video) 

4) Lecture by Walter Lewin. (Video) 

  

https://thefactfactor.com/facts/pure_science/physics/coulombs-law/8731/
http://www.ebyte.it/library/educards/sidimensions/SiDimensionsAlfaList.html
https://youtu.be/yUPdtFqilXo
https://youtu.be/x1-SibwIPM4
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Magnetism 
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2.2.2. Magnetic field intensity at a point on the axis of a circular current carrying coil: ............... 52 
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2 Magnetic Fields and Lorentz Force 

We have seen in the previous chapter that a static charge generates static electric field, but not an 

electric current. This is why there is no force acting on a static charge near a current-carrying 

conductor (wire). On the other hand, a moving charge in the same place experiences a force (keeping 

the charge static but the conductor moving produces a similar effect). This lets us hypothesize that 

there is a type of ‘field’ being generated by the current-carrying conductor – which only affects a 

charge in relative motion with respect to the conductor. Precise measurements prove this hypothesis 

and we call this field a Magnetic field. Just as the electric fields are conventionally denoted as 𝐸⃗⃗, 

magnetic fields are denoted as 𝐵⃗⃗. The net force acting on the charge in this case by both the electric 

and magnetic fields is called a Lorentz force. The law was implicit in a paper by J. C. Maxwell 

(1865), though later Oliver Heaviside correctly identified the contribution of the magnetic force and 

H. Lorentz finished a complete derivation with the electric force a few years later (1895). 

The electromagnetic force 𝐹⃗ on a test charge 𝑞 with a velocity 

𝑣⃗ at a given point and time can be parameterized by exactly two 

vectors 𝐸⃗⃗ and 𝐵⃗⃗, in the functional form: 

𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) 

Clearly, in absence of the electric field, the force is 

perpendicular to both 𝑣⃗ and 𝐵⃗⃗ and its direction is determined by 

the right-hand cork-screw rule of cross-product. As  

𝐹 = |𝐹⃗| = 𝑞𝐵𝑣 sin𝜃 ⇒ 𝐵 =
𝐹

𝑞𝑣 sin 𝜃
 

⇒ [𝐵] =
[𝑀𝐿𝑇−2]

[𝐼𝑇][𝐿𝑇−1]
= [𝑀𝑇−2𝐼−1] 

Figure 42: Maschen - Own work, CC0, 

https://commons.wikimedia.org/w/index.p
hp?curid=21249209 

https://en.wikipedia.org/wiki/Lorentz_force
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The units of a magnetic field are respectively Tesla (magnetic field which, when applied to an 1𝐶 

charge, moving at 1𝑚/𝑠 perpendicular to the field, exerts a force of 1𝑁 on the charge) and Gauss 

(magnetic field which, when applied to an 1𝑒𝑚𝑢 charge, moving at 1𝑐𝑚/𝑠 perpendicular to the field, 

exerts a force of 1𝑑𝑦𝑛𝑒 on the charge) in 𝑆𝐼 and 𝐶𝐺𝑆 units. 

1𝑇 =
1𝑁

1𝐶 × 1𝑚𝑠−1
=

105𝑑𝑦𝑛𝑒

0.1𝑒𝑚𝑢 × 100𝑐𝑚𝑠−1
= 104

𝑑𝑦𝑛𝑒

𝑒𝑚𝑢 × 𝑐𝑚𝑠−1
= 104𝐺 

3 Biot-Savart-Law 

3.1 Definition (pronounced: ‘by-oh-suh-vahr’) 

We came to know in the last section that an electric 

conductor creates a magnetic field. The next job 

would be to know the how and how much of it. 

Named after Jean-Baptiste Biot and Félix Savart 

(1820), the Biot-Savart Law describes the magnetic 

field generated by a steady electric current in terms of 

the magnitude, direction, length, and proximity of the 

electric current.  

A steady (or stationary) current is a continual flow of 

charges which does not change with time and the 

charge neither accumulates nor depletes at any point. 

Unlike electric charges, there is nothing like a ‘point 

current’. Thus the law has to be written in a 

differential form, in terms of an infinitesimal current 

element. As shown in the adjacent figure, for a steady 

current 𝐼 passing through a conductor, the current 

element corresponding the length element 𝑑𝑙 of the conductor is 𝐼𝑑𝑙. If the infinitesimal magnetic 

field is 𝑑𝐵⃗⃗ due to the infinitesimal current element 𝑑𝑙 at a point 𝑃, 𝑟 distance from the current element 

(where 𝑟 makes the angle 𝜃 with 𝑑𝑙 ), then, 

|𝑑𝐵⃗⃗| ∝ 𝐼|𝑑𝑙|

|𝑑𝐵⃗⃗| ∝ sin 𝜃

|𝑑𝐵⃗⃗| ∝
1

|𝑟|2

   

}
 
 

 
 

  |𝑑𝐵⃗⃗| ∝
𝐼|𝑑𝑙| sin𝜃

|𝑟|2
 

⇒ |𝑑𝐵⃗⃗| = 𝑘
𝐼|𝑑𝑙| sin𝜃

|𝑟|2
 

𝑘 is a proportionality constant, determined by the unit 

of current. In 𝑆𝐼 system, 𝑘 =
𝜇0

4𝜋
, where 𝜇0 = (4𝜋 ×

10−7)𝐻𝑚−1 = (4𝜋 × 10−7)𝑁𝐴−2 is the magnetic 

permeability of the classical vacuum. The direction of 

this infinitesimal magnetic field is guided by the right-

hand cork-screw rule. This means that at the point 𝑃 

(check Figure 2), the direction of the field is 

perpendicular to this page and into the page. This is generally denoted by ⊗ in literature (check the 

figure). Similarly, in figures where the field is perpendicularly coming out of the page, the usual 

symbol is ⊙. 

Figure 43: 
http://www.physics.louisville.edu/cldavis
/phys299/notes/mag_biotsavart.html 
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To remember the direction of the magnetic field, use the mnemonic in the figure above. With all these 

info at our disposal, we can now write the vectorial form of the equation: 

𝑑𝐵⃗⃗ =
𝜇0
4𝜋
(
𝐼𝑑𝑙 × 𝑟̂

|𝑟|2
) =

𝜇0
4𝜋
(
𝐼𝑑𝑙 × 𝑟

|𝑟|3
) 

⇒ 𝐵⃗⃗ =
𝜇0
4𝜋
∫(

𝐼𝑑𝑙 × 𝑟

|𝑟|3
)

 

𝐶

 

→ This is the total field generated due to the whole conductor. Some important points: 

 When 𝜃 = 0°, 𝑑𝐵⃗⃗ = 0, i.e., the intensity of the magnetic field at all points on the axis of the 

current element is zero. 

 When 𝜃 = 90°, 𝑑𝐵⃗⃗ is maximum, i.e., the intensity of the magnetic field at all points lying 

perpendicular to the axis of the current element is maximum. 

 The intensity mentioned above is called the magnetic induction vector or the magnetic flux 

density. 

3.2 Applications of Biot-Savart Law: 

a. Magnetic field intensity at a point due to a straight conductor: 

Following the adjacent figure, 𝑋𝑌 is a straight conductor, through 

which electric current 𝐼 is passing from 𝑋 to 𝑌. The job is to find 

out the magnetic field due to this wire at a point 𝑃. Just like in the 

previous section, direction of magnetic field at 𝑃 would be into 

the page, i.e., ⊗. Let us say that the point at which the normal 

from 𝑃 𝑋𝑌 cuts the conductor is named 𝑂. 𝑂𝑃 = 𝑟.  Imagine an 

infinitesimal part 𝑑𝑙 (𝑀𝑁) of the conductor at a distance 𝑙 

from 𝑂. Magnetic field at the point 𝑃 due to the current element 

𝐼𝑑𝑙 is, 

𝑑𝐵 =
𝜇0
4𝜋

𝐼𝑑𝑙 sin 𝜃

𝑟′2
 

Now,  

𝑟 = 𝑟′ sin(∠𝑃(𝑑𝑙)𝑂) = 𝑟′ sin(𝜋 − 𝜃) = 𝑟′ sin𝜃 

⇒ 𝑟′ =  𝑟 csc 𝜃 

Also,  

𝑟 = 𝑙 tan(∠𝑃(𝑑𝑙)𝑂) = 𝑙 tan(𝜋 − 𝜃) = −𝑙 tan𝜃 

⇒ 𝑙 = −𝑟 cot 𝜃 ⇒ 𝑑𝑙 = 𝑟 csc2 𝜃  𝑑𝜃 

∴ 𝑑𝐵 =
𝜇0
4𝜋

𝐼𝑑𝑙 sin𝜃

𝑟′2
=
𝜇0
4𝜋

𝐼(𝑟 csc2 𝜃 𝑑𝜃) sin 𝜃

𝑟2 csc2 𝜃
=
𝜇0
4𝜋

𝐼

𝑟
sin 𝜃 𝑑𝜃 

Hence, for the whole conductor 𝑋𝑌, the field at 𝑃 is, 

𝐵 = ∫𝑑𝐵 =
𝜇0
4𝜋

𝐼

𝑟
∫ sin 𝜃 𝑑𝜃

𝜋−𝜃2

𝜃1

=
𝜇0
4𝜋

𝐼

𝑟
[− cos 𝜃]𝜃1

𝜋−𝜃2 =
𝜇0
4𝜋

𝐼

𝑟
(cos 𝜃1 + cos𝜃2) 

Special Cases: 

A. When the conductor is infinitely long, it spreads both directions in such a way that 𝜃1 = 𝜃2 =

0°. In that case, intensity of the magnetic field at 𝑃, 
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𝐵 =
𝜇0
4𝜋

𝐼

𝑟
(cos 0° + cos 0°) =

𝜇0
2𝜋

𝐼

𝑟
 

B. When the conductor is finite at one end and infinitely long at the other, i.e., semi-infinite, then 

𝜃1 = 90° and 𝜃2 = 0°. In that case, intensity of the magnetic field at 𝑃, 

𝐵 =
𝜇0
4𝜋

𝐼

𝑟
(cos 90° + cos 0°) =

𝜇0
4𝜋

𝐼

𝑟
 

 

Numerical Examples: 

X. Find the value and direction of the Lorentz force acting on a particle with charge 3.2 ×

10−19𝐶, moving at a velocity (3𝑖̂ − 4𝑗̂)𝑚𝑠−1 through a magnetic field 𝐵⃗⃗ = (2𝑖̂ + 3𝑗̂) 𝑇. 
Answer:  
 

The Lorentz force on the charged particle  

𝐹⃗ = 𝑞(𝑣⃗ × 𝐵⃗⃗) = 𝑞 |
𝑖̂ 𝑗̂ 𝑘̂
3 −4 0
2 3 0

| = 3.2 × 10−19 × (9 + 8)𝑘̂ 𝑁 = 5.44 × 10−18𝑁 

in the 𝑧 direction. 

 

XI. A conductor is bent in such a way that it makes a square frame of radius 𝑎. If a current 𝑖 
passes through the frame, what would be the intensity of the magnetic field at the center 

of the frame? 
Answer: 

 

Following the figure, 𝑃𝑄𝑅𝑆 is the square frame with the center 

at 𝑂. From the symmetry of the frame, the magnetic field at the 

center would be 4 times that generated by any side of the 

square. Let us isolate a side 𝑃𝑄. The field 𝐵1 at 𝑂 due to 𝑃𝑄 is 

easy to calculate: 

𝐵1 =
𝜇0
4𝜋

𝑖

𝑟
(cos 𝜃1 + cos 𝜃2) =

𝜇0
4𝜋

𝑖

𝑎/2
(cos45° + cos 45°)

=
𝜇0
4𝜋

2√2𝑖

𝑎
 Tesla 

b. Magnetic field intensity at a point on the axis of a circular current carrying coil: 

In the adjacent Figure 3, the circular 

conducting coil (with one loop) centered 

at 𝑂 is carrying a steady current of 𝑖 
Amperes. A 3-D point of view, for ease 

of understanding is in Figure 4. The job is 

to calculate the magnetic field 𝐵 at a 

point 𝑃 on the axis of the loop at a 

distance 𝑥 from 𝑂. Consider an 

infinitesimal length 𝑑𝑙 of the loop at 

point 𝐸, with the corresponding current 

element 𝑖𝑑𝑙. The displacement vector 𝐸𝑃 

is 𝑟. The direction of the magnetic field at 

𝑃 is along 𝑃𝑄⃗⃗ ⃗⃗ ⃗⃗ , perpendicular to the plane 

containing both 𝑖𝑑𝑙 and 𝑟. Combining all these, the magnetic field at 𝑃 due to 𝑖𝑑𝑙 is 

Figure 44 
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𝑑𝐵⃗⃗ =
𝜇0
4𝜋
(
𝑖𝑑𝑙 × 𝑟

𝑟3
) 

⇒ |𝑑𝐵⃗⃗| =
𝜇0
4𝜋

𝑖 𝑑𝑙 𝑟 sin 90°

𝑟3
=
𝜇0𝑖

4𝜋

𝑑𝑙

𝑟2

=
𝜇0𝑖

4𝜋

𝑑𝑙

(𝑎2 + 𝑥2)
 

Now, the components along the axis and 

perpendicular to the axis of the loop are, 

respectively, 𝑑𝐵 sin𝜃 and 𝑑𝐵 cos𝜃. 

We can consider a similar current element of the 

loop 𝑖𝑑𝑙 at a point 𝐹 exactly on the opposite side of it. Following the derivation above, the component 

of the magnetic field due to this element at 𝑃, perpendicular to the axis of the loop is – 𝑑𝐵 cos𝜃, 

exactly same and opposite to that due to the element at 𝐸. These two cancel each other out. Following 

the circular symmetry of the loop, we can see that for every current element on it, there is an equal 

and opposite element too, whose perpendicular components cancel each other, i.e., ∫𝑑𝐵 cos𝜃 = 0. 

Thus the only remaining component of the force is along the axis: 

 

𝐵 = ∫𝑑𝐵 sin𝜃 = ∫
𝜇0𝑖

4𝜋

𝑑𝑙

(𝑎2 + 𝑥2)
sin𝜃

2𝜋𝑎

0

= ∫
𝜇0𝑖

4𝜋

𝑑𝑙

(𝑎2 + 𝑥2)

𝑎

√𝑎2 + 𝑥2
 

2𝜋𝑎

0

=
𝜇0𝑖𝑎

4𝜋(𝑎2 + 𝑥2)
3
2

∫ 𝑑𝑙

2𝜋𝑎

0

=
𝜇0𝑖𝑎

4𝜋(𝑎2 + 𝑥2)
3
2

 2𝜋𝑎 

⇒ 𝐵⃗⃗ =
𝜇0𝑖

2

𝑎2

(𝑎2 + 𝑥2)
3
2

 𝑥 

We can clearly see how this unidirectional magnetic field can (very roughly) mimic a real magnet 

with poles on both sides. Figure 5 tries to show this pictorially. Case ‘C’ below shows this in a 

mathematical way. 

Special Cases: 

A. We can imagine the coil to be comprised of 𝑛 loops. Then the intensity increases to simply 

Figure 45 
https://www.miniphysics.com/uy1-
magnetic-field-of-a-circular-current-

Figure 46 
https://www.britannica.com/scienc
e/magnetism/Magnetic-field-of-
steady-currents 
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𝐵⃗⃗ = 𝑛
𝜇0𝑖

2

𝑎2

(𝑎2 + 𝑥2)
3
2

 𝑥 

B. The field is maximum (
𝜇0𝑖

2𝑎
) at 𝑥 = 0, i.e., at the 

center of the loop and symmetrically decreases on 

both sides of the loop with increasing 𝑥. The 

figure on the right plots the change of 𝐵 with 𝑥.  

Home Work: Calculate the double derivative of 𝐵 

w.r.t. 𝑥. At which point is it zero? 

C. One fringe case is quite interesting. When 𝑃 is at a 

large distance from the center of the loop, i.e., 

𝑥 ≫ 𝑎,  

𝐵⃗⃗ =
𝜇0𝑖

2

𝑎2

𝑥3
 𝑥 =

𝜇0
2𝜋

𝑖(𝜋𝑎2)𝑥

𝑥3
=
𝜇0
2𝜋

𝑖𝐴

𝑥3
 

where 𝐴 = 𝜋𝑎2𝑥̂ is the area vector of the loop. Hence, 𝑀⃗⃗⃗ = 𝑖𝐴 is the dipole moment of the 

current-carrying loop. That means 𝐵⃗⃗ =
𝜇0

2𝜋

𝑀⃗⃗⃗

𝑥3
, which is the exact form of a bar magnet. Thus, 

at a distance, a circular loop just mimics a bar magnet. 

c. Magnetic field intensity at a point on the axis of a current carrying solenoid: 

A solenoid whose length is much larger than its 

radius is called a long solenoid. Adjacent 

figures show the cross-section of the solenoid. 

Let’s say that the radius of the solenoid= 𝑎, 

current through it is 𝐼, turn density (no. of loops 

per unit length)= 𝑛. To determine the magnetic 

field intensity of the solenoid at a point 𝑃 on its 

axis, we consider a small length 𝑑𝑥 (𝑀𝑁) of 

the solenoid. The center of this length element 

𝑂 is at a distance 𝑥 from the point 𝑃 (along the 

axis). As 𝑑𝑥 is infinitesimally small, it is 

equivalent to a thin circular loop, two ends of which (𝑀 and 𝑁) are at angles 𝜃 and 𝜃 + 𝑑𝜃 with the 

axis at 𝑃, respectively.  

Number of turns within 𝑀𝑁 = 𝑛 𝑑𝑥. 𝑀𝑃 = 𝑟 = √𝑎2 + 𝑥2. Also, from Figure 7, 𝑁𝑅 = 𝑟 𝑑𝜃 and 
𝑁𝑅

𝑀𝑁
= sin𝜃. 

∴ 𝑁𝑅 = 𝑀𝑁 sin𝜃 = 𝑑𝑥 sin𝜃 ⇒ 𝑟 𝑑𝜃 = 𝑑𝑥 sin 𝜃 ⇒ 𝑑𝑥 =
𝑟 𝑑𝜃

sin 𝜃
 

also,   
𝑎

𝑟
= sin𝜃 

Figure 47 Solenoid (https://www.miniphysics.com/ss-magnetic-field-due-to-current-in-a-solenoid.html ) 

Figure 48 
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Hence, the magnetic field intensity at 𝑃 due to 𝑑𝑥 length of the solenoid, 

𝑑𝐵 =
𝜇0𝐼

4𝜋

2𝜋(𝑛 𝑑𝑥) 𝑎2

(𝑎2 + 𝑥2)
3
2

=
𝜇0𝐼

4𝜋
(
2𝜋𝑛

𝑟
) (
𝑎

𝑟
)
2 𝑟

sin 𝜃
 𝑑𝜃 =

𝜇0𝐼

4𝜋
(2𝜋𝑛) sin2 𝜃

1

sin𝜃
 𝑑𝜃 =

𝜇0𝑛𝐼

2
sin𝜃 𝑑𝜃 

⇒ 𝐵 =
𝜇0𝑛𝐼

2
∫ sin𝜃 𝑑𝜃

𝜃2

𝜃1

=
𝜇0𝑛𝐼

2
[− cos 𝜃]𝜃1

𝜃2 =
𝜇0𝑛𝐼

2
(cos 𝜃1 − cos 𝜃2) 

Discussions: 

A. From Figure 7 we can see that if the solenoid is very long and 𝑃 is far from both ends of it, 

then 𝜃1 ≈ 0° and 𝜃2 ≈ 180°. In that case, the magnetic field intensity becomes 

𝐵 =
𝜇0𝑛𝐼

2
(cos 0° − cos 180°) = 𝜇0𝑛𝐼 

B. If 𝑃 is on the left end of the (very long) solenoid, then 𝜃1 = 90° and 𝜃2 ≈ 180°. Then the 

magnetic field is 𝐵 =
𝜇0𝑛𝐼

2
(cos90° − cos180°) =

𝜇0𝑛𝐼

2
 

C. Similarly, for the right end, 𝜃1 ≈ 0° and 𝜃2 = 90°, and the field, 𝐵 =
𝜇0𝑛𝐼

2
(cos 0° −

cos 90°) =
𝜇0𝑛𝐼

2
 

Thus, the field intensity at two ends of a solenoid is same and is half of that inside the solenoid.  

Numerical Examples: 

I. A circular coil of radius 10 𝑐𝑚 has 100 turns in it. What is the intensity of the magnetic 

field at its center if the current through the coil is 5 𝐴? 
Answer:  

As 𝑥 = 0, magnetic field-intensity at the center of the coil,  

𝐵 =
𝜇0𝑛𝐼

2𝑎
 

Here 𝑛 = 100, 𝑎 = 10 𝑐𝑚 = 0.1 𝑚, 𝐼 = 5 𝐴, and 𝜇 = 4𝜋 × 10−7𝐻𝑚−1. 

∴ 𝐵 =
4𝜋 × 10−7 × 100 × 5

2 × 0.1
 𝑇 = 𝜋 × 10−3 𝑇 

II. A solenoid is made by wrapping densely-packed thin wire around a non-conducting 

cylinder. The length of the solenoid is twice its radius. What is the magnetic field at its 

center if current passing through the coil is 𝐼? 
Answer:  

As 𝐿 = 2𝑎, following the adjacent figure, cos 𝜃1 =
𝐿

2

√2𝑎
=

1

√2
 , and cos(𝜋 − 𝜃2) =

𝐿

2

√2𝑎
=

1

√2
⇒

cos𝜃2 = −
1

√2
. If the total number of turns in the solenoid is 𝑁, then the magnetic field at the 

center, 

𝐵 =
𝜇0 (

𝑁
𝐿) 𝐼

2
(cos𝜃1 − cos 𝜃2) =

𝜇0𝑁𝐼

√2𝐿
 

III. What is the magnetic field intensity at the center of a semi-circular wire-frame of length 𝐿 

and carrying current 𝐼? 

Answer:  

If the radius of the semi-circle is 𝑟, then 𝐿 = 𝜋𝑟 ⇒ 𝑟 = 𝐿/𝜋. Hence the field intensity at the 

center 

𝐵 =
1

2

𝜇0𝐼

2𝑟
=
𝜇0𝜋𝐼

4𝐿
 

 


