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1. Introduction
The underlying elements in vector analysis are vectors and scalars.

A. Vectors (As directed line segments):
There are quantities in physics and science characterized by both magnitude and direction, such as
displacement, velocity, force, and acceleration. Pictorially, these are thus denoted as directed (with
arrowheads) straight line segments. The direction of the arrow is

A 2N P the direction of the said quantity and the magnitude of the
(a) guantity is proportional to the length of the line segment. In the
A — s figure on the left, the line-segment AB denotes a force of 5N, and
10N has a length 1cm. The force is from A to B. As the line below that

Figure 1
is double in length (i.e. 2 cm), it must denote a force of 10N in the

same direction.

For completeness, a Scalar is a quantity that is completely denoted by just its magnitude. Examples
are mass, length, temperature, etc.

To be considered as a vector, it is not enough for a quantity to have just amplitude and direction. It
must also follow certain rules in addition. These rules are the rules of vector algebra. Hence, for a
physical quantity to be a vector,

1. The quantity must have a magnitude and a direction, independent of the frame of
reference.
2. It must follow the rules of vector algebra.

Remember that we will always denote a vector with an arrow on top of it.

Before writing down the rules of vector algebra, let us talk about some properties and definitions
regarding vectors.

B. Useful Information about vectors:
1. Equal Vectors: Two vectors are equal only if they have equal magnitude and direction
regardless of their initial point.

In the first figure on the left, |/T| =PQ = P ——-,_‘.—bQ k A F
|§| = MN (i.e. their magnitudes are the M—————»N C¢——— |
same) and they have the same direction. B L c

Hence, they are equal. On the other hand, (a) ()
though the lengths of the vector-pairs in the X a

other two figures are the same, they have 1) Y R

different directions, and hence, are not (©) Haure 2
equal.

2. Opposite Vectors: Two vectors with the same magnitude but opposite directions are
called opposite vectors of each other.
Vectors A and C in the figure (b) above are equal in magnitude, i.e. |/T| = |6| =EF =
GH, but opposite in direction. .- A=-C

3. Null or Zero Vector: When the two end-points of a vector coincide, i.e. its
length/magnitude becomes zero and it does not have a specific direction, it is called a
null vector.
It is represented as 0. Properties of null vector are:
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i. A+0=

il A + (—ff) =0
iii. kO = 6, where k is a scalar
iv. 04=0

4. Collinear Vectors: Two vectors, with either the same or opposite direction, are called
collinear if they lie on the same line or parallel

—i., lines.
P Q R Y » N the attached figure, vectors 1_5, 6, and R are
A B C D zZ on the same straight line, whereas )?, 17, and Z
Figure 3 (@) (b) are parallel to each other. P, ¢, and R are

- — =3
collinear and X, Y, and Z are collinear as well.
Two collinear vectors with the same direction are called like vectors (Obviously, two like

vectors with equal magnitude are equal vectors). In the figure, P and R are like vectors

and same is true for X and Y.

5. Coplanar Vectors are vectors that lie in the same plane in three-dimensional space.
6. Unit Vectors are vectors with unit length/magnitude, also known as directional vectors.
(Unit vectors are denoted with a ‘hat’/’circumflex’ i.e. » sign on top of them, instead of

an arrow.) If a vector A has magnitude A and @ is the unit vector in the direction of ff,

then

a= ~A=Aa

N )

2. Laws of Vector Algebra:

A. Scalar Multiplication
In common geometrical contexts, scalar multiplication of a
real Euclidean vector by a positive real number multiplies the
magnitude of the vector - without changing its direction. The
term ‘scalar’ itself derives from this usage: a scalar is that
which scales vectors. Scalar multiplication is the multiplication
of a vector by a scalar (where the product is a vector). If the
scalar is negative, then the vector scales in magnitude as well
as changes the direction to the opposite side.

a =
/ 2a
Figure 4

By Silly rabbit - enwiki, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php ?curid=5088002

B. Laws
1. A+ B=B+4 (The Commutative Law for Addition)
2. A+ (§ + 5) = (ﬁ + §) +C (The Associative Law for Addition)

3. When m and n are scalars,
i m(ff—l_—l?)=m/¥-l_—m§
i. (m=+ n)/f =mA +nd
iii. m(nff) = (mn)/T

The first two are Distributive Laws for Addition, and the last one is for Multiplication.

As you can see, these only involve the interactions of scalars and vectors. There are other
laws too, for vectors only. For that, we need to know the multiplication or product of
vectors. For now, just know that there are two types of products possible for a vector: a) the
Dot (.) or Scalar product and b) the Cross (X) or Vector product. We have Distributive laws

for these two as well:

MATHEMATICAL METHODSANDELECTRODYNAMICS | Gen-Sem-1 (CBCS)



iv. A(B+C)=A4B+
v.  Ax(B+C)=4Ax

For a physical quantity to be called a Vector, it must follow these properties, in addition to having
both magnitude and direction. As an example, the electric current has both direction and magnitude
but does not follow these laws, and hence, is a scalar, not a vector. Time too, is scalar, for the same
reason.

3. Vector Addition:

As vectors have direction, adding two or more vectors is more complicated than adding their

magnitudes. The resultant vector R obtained after adding two vectors Pand (3, can be found by
applying one of the three equivalent laws of vector addition:

A. Triangle Law:
When two vectors of the same class are represented as two sides of
the triangle with the order of magnitude and direction, then the third
side of the triangle represents the magnitude and direction of the
resultant vector.
In the adjacent figure, P and 6 are respectively represented by two
sides OA and 4B of the triangle OAB, in terms of both magnitude and (3
direction. The third side OB then represents the resultant R ofthese  Figures P
vectors, i.e. R=P+ (_f If the angle between the vectors P and 5 is 0, then
|R| =R =+P2+Q2+2PQcosb
In addition, if the angle that R makes with P is ¢, then
Qsin@

B. Parallelogram Law:
If two vectors of the same class, acting on the same point, are

B octeiiisiaaiia; c represented by two adjacent sides of a parallelogram, then the
diagonal of the parallelogram through the common point
6 represents the sum of the two vectors in both magnitude and
direction.
0 :;; »Al Figure6  In the adjacent figure, P and 6 are respectively represented by

two adjacent sides 04 and 4B of the parallelogram OACB, in
terms of both magnitude and direction. The diagonal 0C then represents the resultant R of these
vectors, i.e. R=P+ 6 If the angle between the vectors P and 5 is 8, then |ﬁ| =R =

VP2 + Q2 + 2 PQ cos 6. In addition, if the angle that R makes with B is ¢, then tan ¢ = Pf;l—cr:)‘zg
C. Polygon Law: \

If (n — 1) number of vectors are represented by (n — 1) L /4/ ur__:’f.v—— ,.(' <

sides of a polygon in sequence, then nth side, closing the ’/ 2 i A N8

polygon in the opposite direction, represents the sum of / o | /

the vectors in both magnitude and direction. A 3 [

Let’s say, d, B, ¢, and d are four coplanar vectors, g (a) Y d #

depicted by the four sides m, Zﬁ, Ef, and CD of the Flgure 7 (®)
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open polygon OABCD, in both magnitude and direction. Then the last side of this polygon ﬁ)’, taken
in the opposite direction, expresses the resultant R of these four vectors in both magnitude and
direction.» R=d+b+¢é+d

4. Vector Multiplication

A. Vectors in the Cartesian coordinate system
A Cartesian coordinate system is a coordinate system that

. specifies each point uniquely by a set of numerical
i coordinates, which are the signed distances to the point
Pid from three fixed perpendicular oriented lines, measured in
| f; ---_;%{F_ the same unit of length. Each reference line is called a
_,,--""" y —+ =" coordinate axis or just axis (plural axes) of the system, and
x” the point where they meet is its origin, at ordered

pair (0,0, 0). The coordinates can also be defined as the
positions of the perpendicular projections of the point onto
Figure 8

By Jorge Stolfi - Own work, Public Domain, the three axes, expressed as signed distances from the
https://commons.wikimedia.org/w/index.php ?curid=6692547 o I’Igl n

In three dimensions, a Cartesian coordinate system can be of two types, depending on their
handedness. In the adjacent figure, the two coordinate systems are called a left-handed and a right-
handed system respectively. In all of our discussions, we will talk about a right-handed coordinate

system.

To remember, think of a screw which you are © <
rotating from positive x axis to positive y axis, the
screw will move towards the positive z direction in
a right-handed coordinate system. Another way of
remembering is that if we curl the fingers of our
right hand in the direction of a 90° rotation from

the positive x axis to the positive y axis, then the Figure 9
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php ?curid=628183

thumb will point to the positive z axis.

Remember the definition of unit vectors from section 1.B.? An important set of three unit vectors,
called 7, j, and k can be defined such that they represent the positive directions of the x, y, and z

z axes of a Cartesian coordinate system. Any vector Ain
three dimensional Cartesian coordinate system can be
=€ P.(x,1;2) represented with an initial point at the origin O = (0, 0, 0)

= and its endpoint at some point, say, (41,45, 43). Then the

7
" e, vectors A, 1, A,j, and Ask are called the component
- - 7
- Y vectors and A4, A,, and A5 the components of A in
the x, y, and z directions, respectively. As any vector in 3-
% dimension can be expressed with the help of {, j, and k,

Figure 10 - they are called the basis vectors of the Cartesian
By Original: Jack Ver at Dutch Wikipedia Vector: Ponor - Own v‘vork based on: N N
Pt oS al, e (il te fpledCy coordinate system. Hence, A = Al + A,] + Azk
https://commons. org/w/index.php ?curid=95477901

This is very useful for vector addition and scalar multiplication:

A+B = (4, £ B)i+ (4, + B,)j + (43 + B3)k and mA = mA,i + mA,j + mAsk.
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Using the methodology of the paragraph above, we can assign a P(xp, ¥1, 7)) Q(xa ¥a, =)
vector to each point P = (x,y, z) in space with respect to the >

origin O = (0,0,0) (starting from the origin and ending on the /
point). This is called the Position Vector OP = 7 of the point. / v
=xi+yj+zk, /
0", 0.m Figure 11

|7] = /x2% + y?% + z2
This enables us to measure the distance between two points with the help of vectors. Let’s say that

the origin is O and the position vectors of two points P and Q are (x;i + y;j + z,k) and (x,1 +
y.J + z,k) respectively. From the adjacent figure, 0Q = OP + PQ = PQ = 0Q — OP

=Xy —x )+ —y1)j + (25 — z)k
= [PQ| = V(s = x)2 + (v, — y1)? + (22 — 2)?

Here the last line depicts the distance between the two points.

B. Dot Product

Suppose the magnitudes of two vectors Aand B are A and
B and the intermediate angle is 8. Then the Dot product is
defined as

[/T.E) = AB cosH]
B = BAcos@
= BAcos(—6) =B. A

|A| cos@

Figure 12 Scalar Projection

By No machine-readable author provided. Mazin07 assumed (based on copyright

The result on the left-hand side is a scalar. This is why it is
also called a Scalar Product.

claims). - No machine-readable source provided. Own work assumed (based on . . =
copyright lims), PublicDomain, Example: when force and displacement are respectively F
https://commons.wikimedia.org/w/index.php ?curid=3899178 N
- -
and s, then the work done by the force W = F.s.
d ENN 5> dS, .
Power— — F. — = F.v, where v = — is the velocity.
dt ( ) d ! dt y

Let us list some rules of the dot product of vectors:

1. AB=B.4 (Commutative Law)
2. A(B+C)=A4B+AC (Distributive Law)
3. m(/f E) = m/T) B =A. (mB) = (A B)m where m is a scalar
4. i.i=fj=kk=1)1)cos0°=1

5. Lj=jk=ki= (1)(1) c0s90° = 0

6. AA=|d|" cos0° = |d|" = 42

This directly means that the magnitude (norm) of a vector /T, A=+AA

7. I1fA.B = 0 and none of 4 and B are null vectors, then Aand B are perpendicular to
each other. They are also called orthogonal to each other.

8. If two vectors 4 and B are expressed in terms of their components in a Cartesian
coordinate system, A = A i+ Ayj+ A,k and B = Byi+By,j+ B,k, then
AB = (A + Ay + Ak). (Bl + Byj + B,k)
= A,B,(i.0) + AyB,(j.}) + A,B,(k.k)
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= A(B, + A,B, + A,B,

>+

Ed —_ j.
9. If the angle between two vectors A and B, then cosf = —

10. (Check Figure 12)
If the unit vector is in the direction of vector B is b, then the component of the

[ss]

> =

vector A in that direction is A. b = % = A cos 6. So the component vector of Ain
the direction of B is
. (AB\B (A.B)B
(Acos0)b = < B )E =g

C. Direction Cosines of a Vector
In analytic geometry, the direction cosines (or directional cosines) of a vector are the cosines of the
! angles between the vector and the three
coordinate axes. Equivalently, they are
the contributions of each component of
the basis to a unit vector in that
direction.

Figure 13

By Maschen - Own work, CCO,
https://commons.wikimedia.org/
w/index.php?curid=26685534

Avector V = Vi+V,j+ V,k makes
angles a, b, and ¢ with the three positive
axes respectively. Hence the direction
cosinesare @ = cosa, S = cosb,

and y = cosc. Now,

.V =Vcosa="Va
=L (Gi+Vj+Vk)=V, =Va

v,
=>a=-=
v

Z

Similarly, § = %, andy = VV

(W +W+V7)

- a2+ﬂ2+y2= V2 1
The unit vector in the direction of vector _),
V V., Vi, V.
) = —=-=17 =7 —k
v AT 1+ V] + v
=(0=al+pj +vk|
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D. Cross Product

A Two vectors 4 and B with magnitudes A and B has an angle
6 between them. The Cross Product between A and B will
be represented as:
axb P
b C=AxEB=(ABsin0)a 0<6b<m
i 5
€) where 7i is the unit vector in the direction of C. The result of
the cross-product of two vectors is a
bxa a i e * axb
e SOl vector too. This is why it is also
B ; called a Vector Product. The a .
\ 4 direction of C is such that it is C:-I)RJ
Figure 14 perpendicular to the plane b =
By User:Acdx - Self-made, based on Image:Crossproduct.png, .. - — . > = k '-%é
Public Domain, containing A and B while 4, B, and T
https://commons.wikimedia.org/w/index.php ?curid=4436304 Figure 15

the direction of A to the direction of §, then the thumb will point to the
direction of 5).

Let us list some rules of the dot product of vectors:

Ax B =—(BxA4)

Ax(B+E) =AdxB+ixc
m(ﬁxﬁ)z(mj)xlg’):jx(mﬁ) =(/T><§)m
Ax A= |ff|zsin0°= 0

vk wh e

other.

If A and B are perpendicular to each other, then |4 x B| =

7. If the angle between two vectors A and §, then sinf =

C forma right-handed system (i.e. if
we curl the fingers of our right hand in the direction of a 90° rotation from

By Acdx - Self-made, based on
Image:Right_hand_cross_product.png,
CCBY-SA 3.0,
https://commons.wikimedia.org/w/ind
ex.php?curid=4436743

(Commutative Law Fails)
(Distributive Law)

where m is a scalar

If A x B = 0andnone of A4 and B are null vectors, then Aand B are parallel to each

AB.

8. Significance of Cross Product: The magnitude of A x B is the same as the area ofa

=
-2
-2
—

Figure 16

https://web.aeromech.usyd.edu.au/statics/doc/math3.htm

trigonometry, is
1 1 . h .
A= 2 OP h = > (OP)(ORssin#) [ og = sin 0]

1 - 1 - 7
=-absinf =-|a X b|.
2 2

Area =|axb|= ah = absin(8 )

parallelogram with
sides A and B.

Let’s say that d and b
are represented by
two adjacent sides
OP and OR of a
parallelogram OPQR.
Now the area of
OPQR, from

PO T . . .
~(Am = > |a X b|m, where M is the unit vector perpendicular to the plane

containing d@ and b.
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« &= (@ x b)
= d X b = 22 = area of the parallelogram OPQR.

9. Cross Product in Cartesian Coordiante system:
ixi=jxj=kxk=(1)(1)sin0°=0

b CX byCZ = Cbe iXj=(1)(1)sin90° = 1 ; here i is perpendicular to both
b X |C/) = CXbZ = bXCZ iualr;dj and its direction is determined by the right-hand
b ,CZ_ \_bXCy—CXb,V cixj=kandjxi=—k

Figure 17 Similarly, j % k=1 kxi= 7.

By Cmglee - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php Pcurid=93694405 C ross p rOd u Ct Of a ny tWO ve Cto rs can be S peC Ifl Ed ve ry

simply in the Cartesian coordinate system. If A = A, T+
Ayj + A,k and B = B,i + B,j + Bk, then

i j k
AxB=|A, A, 4,
B, B, B,
A, A, 14, A,|l. |Ax A4y~
=|ByBl+BZB]+Bx L
b% z z x x 5%

= (AyB, — A,B,)i + (A,B, — A;B,)i + (AB, — AyB, )k
= (AyB, — A,;By)i — (AxB, — A,B )i + (AyB, — A,B, )k

E. Triple Product of Vectors
Dot and cross multiplication of three vectors give rise to interesting products of vectors, called Triple
Products. These are of two types: Scalar Triple Product and Vector Triple Product.
When the multiplication of three vectors gives rise to a scalar quantity, it is called a scalar triple
product. Example: A (E X 5)
Let’s say the three vectors are expressed in terms of their Cartesian components: A= At +Ayj +
Ak, B = B,i+ B,j+B,k,and C = C,i + C)f + C,k.

R
BxC=|B, By, B,|=(By,C,—B,Cy)i+ (B,Cy—B.C)i+ (B,C,—B,Cr)k
Ce C G,

2 A (BxC) = (Al + Ayj + Ak).{(B,Cy — B,Cy)i + (B,Cy — ByC)i + (B.Cyy — B, C )k}
= A,(B,C, — B,Cy) + Ay (B,Cy — B,C,) + A,(B,Cy — B, Cy)

Ay Ay, A, B, B, B,
=|Bx By B;|=—-[Ax 4y A4, [following the rules of Determinant]
C. ¢ G, C. C, C,
B, B, B,
= Cx Cy Cz =§(C_‘)X/T)
A, A, A,
C. ¢, C,
—_|B, B, B,
A, A, A,
C. ¢, C,
=|4x A, 4;|=C.(AxB)
B, B, B,

C.E.(Exf):ﬁ.(fxﬁ)=E.(£x§)
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The Geometric Significance of the scalar triple product: The scalar triple product denotes the volume
of a parallelepiped if three adjacent edges of it represent the three vectors.

'B' 'C' T T Figure 18 S Let’s say m’), W), and OR represents the three vectors §,
" 8/[ 5, and 4 both in magnitude and direction. As we have
T learned earlier, the area of the base (enclosed by B and ()
g . of the parallelepiped is B x 5, where the direction of it is
“ _A 7 S perpendicular to the plane containing B and 5, i.e. the
l C; M : base and is denoted by the unit vector 1. Say the angle
O ? that 72 makes with 4 is a. If the height of the

parallelepiped is h, then % =cosa
=>h=Acosa
~ the volume of the parallelepiped is

CV=h|§><E|=A|§x5|cosa=/f.(§x5))

Corollary: If A (§ X 5) = 0, and none of the vectors are null, then the volume of the parallelepiped
made by them is zero, i.e. the three vectors are coplanar.

-

Vector triple products are of two types. For three vectors /T, §, and 5, these are respectively (/f. E)C
and 4 x (B x 5)
In general, (/Tﬁ)f * /T(ﬁ 5) and 4 x (§ X 5) * (A) X §) x C

ix(Bx &) =(A6)F - (AB)¢
(AxB)xC = (A.6)F - (B.0)A

5. Solved Questions
1. IfA=i- 2j + 3k, and B=2i+ 5j — 2k, then determine the magnitude and direction
of_Z +B.
Answer: If resultant of 4 and B is ﬁ, then
R=A+B=(i—-2j+3k)+ (20 +5/—2k) =3i+3j +k
~ The norm offé, R =+32+32+12 =+/10.

The unit vector in the direction of R is,
R _3i+3j+k 3 3 1

R N = \/El + 7o j+ 7o k

2. The magnitudes of three vectors in some arbitrary unit are 2, 3, and 6, respectively. Do
they satisfy the Triangle Law of vector addition? Justify.
Answer: No, these vectors do not satisfy the Triangle law of vector addition, as they do not
constitute a triangle. We know that the sum of any two sides of a triangle is larger than the
third. As 2 4+ 3 < 6, the three supplied vectors do not form a triangle.
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Prove the polygon rule of vector addition from the triangle law of vector addition.
Answer: (Refer to Figure 7)

Let’s join OB and OC. Now 04 and 4B two sequential Q
vectors of the triangle AOAB. Hence, following the triangle
law of addition, OB = 04 + 4B.
Similarly, OC = OB + BC = OA + AB + BC.
Again,w=ﬁ+C—D) =E4)+E+B_C)+C—D),fromthe
triangle AOCD.
:§:&+B+E+J_)(QED) 7 Figure 19
A=2i-2j+kandB =i+ 2j + 3k. Find the component
of§ in the direction of A
Answer: The component of B in the direction of 4 is

L BA (1+2+3k).(20-2j+k) 2-4+3 1

A

B.4a = = = = —

A 2242241 3 3
If vectors A=3i+ 4j + S5kand B = pi—3j+ 3k are orthogonal/perpendicular to each
other, then what is the value of p?

ot}
P

o
1
n

Answer: A and B are perpendicular to each other if A.B=o0.
~ (31445 +5k).(pt -3/ +3k)=0
=>3p—12+15=0

=>3p=-3
>p=-1
le =30+ 5j— 2kand B = 5i — 2j, then find the projection of;f onB. [VU 2018]
Answer: If b is the unit vector in the direction of §, then the projection of 4 in that direction,
> A~ ~ (5 i - Zj)
A.b=(31+5] — 2k).—=
( ! ) V52 + 22
_15-10 5
V29 V29

Find the direction cosines of the vector A = i + 2 j + 2k.
Answer: Here, the components of the vector are A, = 1,4, = 2,and A, = 2. So the norm

of the vector, A = A,ZC + Af, + AZ =1+ 4 + 4 = 3. Hence, the direction cosines are,

(1 2 2)
3’3’3
The norm/magnitude of a vector is 5 and the direction cosines are respectlvely 5 \/_, and =
(in some arbitrary unit). Find the vector.
Answer:
A = 5. The direction cosines,
A, Ay A, 1 1
@ =G 7 5)=7 NGh 3)
(A A, ) (5 5 5)
= - _
x 2°\2'2
> 5. 5, 5a
Hence, the vector 4 = i + Ne2) + Ek'
Show that the diagonals of a parallelogram bisect each other.

Answer:
PR and 63), diagonals of a parallelogram PQRS, cross each other at the point O. Let’s say
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10.

11.

12.

13.

PO = m PR and 65 =n a?) Now, using the law of vector addition, we can write,

PQ + QS =PS
~0S=PS—PO=h—a

On the other hand,
PS+SR=PRandPR=b+d
.-.m)zmﬁzm(5+&)
We can write P—Q) + Q—d = PO for the triangle APQO.
»PQ =P0—Q0 =m(b+ad)—n(b-d)
>d=m-n)b+(m+n)d
As d@ and b do not lie on the same straight line, this is only true when

m—n)=0=>m=nand(m+n)=1

o1
-.m—n—2

Hence, diagonals of a parallelogram bisect each other. (QED)

IfA=3i—2j+ kand4 = 3 i— 2j +k, then find the angle between them.
[CU 2016, 2011, BU 2016]

Answer:

We know that A.B = A B cos 6.

A.B

AB

Now, 4.B = (3 +2j —6k).(4i -3/ +k)=12-6—-6=0

T
:>cost9=0:>9=5

s cosf =

The angle between the vectors is 90° i.e. those vectors are perpendicular to each other.
For what value of x are the two vectors A = i + xj+k and B = 3i — 2j — 2k
perpendicular to each other? [CU 2015, 2013]
Answer:
The condition for 4 and B to be perpendicular is A.B =o.

= (i+xj+k).(3t—-2j-2k)=0

=23-2x—2=0

1
>x ==
2
Find the unit vector in the direction of the vector A = 3i + 4j + k. [CU 2014]
Answer:

A=31+4j+k
A = R T =36
Hence, the unit vector in the direction of A:
A 3i+4j+k
a= W =~
If |A + B| = |A — B, then prove that A and B are perpendicular to each other.
[CU 2012, BU 2017]
Answer:
|4+ B| =|4- B
= A? + B2 + 2AB cos = A% + B> — 2AB cos 6

-PHY



=>cosf=0=0=90°

—

. . . dA — ,
14. If A is a vector with constant magnitude, then prove that o and A are perpendicular to

each other. [CU 2011]
Answer:

> . . . d=»
A'is a vector with constant magnitude, i.e. |4| =constant.= o |[A] =0

AA=|Al
LdA_ad _ L
= 2A.E = 2|4] I |A|  [Differentiating with respect to t]
L dA d,
= A—-=0 [-.-E|A|=0]
% |ff| and 4 are perpendicular to each other.
15. Show that C?> = A% + B? — 2AB cos®0 for a triangle. [VU 2018]
Answer:
From the adjacent figure,
c2=C.C
= (2= (A-B).(A-F)
=A% +B?—24.B 2

=A*+B?—-2ABcos0
16. If AXB+BXxC+CxA4= 0, then determine whether the three vectors are coplanar or

not.
Answer:
AXB+BxC+CxA=
> A(AxB+BxC+CxA)=0
s A (AxB)+A(Bx ) +A(CxA)=0

.

C X A) are perpendicular to A
“A(AxB)=A4(CxA)=0
= A (BxC)=0
Hence, the three vectors are coplanar.
17. Three vectors are: A = 3i—-2j+ k B = i+j—2k, and C = 3i—4j+ Ak Whatis
the value of A so that the three vectors are coplanar?
Answer: The relation that ensures that /T, §, and C are coplanar s A (§ X 5) =0

Now, both (/T X E) and

N

3 =2 1
A(BxC)=1 1 -2|=3(A-8)+2(1+6)+1(-4-3)
3 —4 2

=31-244+21+12—-7=51-19
Hence for the vectors to be coplanar, 1 = %.
18. Show that (w X 7)? = w.{F X (@ X )}

Answer:
(BxP)2=(@xP).(06X7)
=B x (B xP)} [ A.(BxC)=B.(CxA)]
19.A=210— 2j+ k andB =i +2 j + 3 k. Find the component of§ in the direction on.
Answer:

A _(2i-2j+k) 2, 2, 17
== T 5! 3]+3k.

The unit vector in the directionof Aisd = 1] N
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~. the component of B in the direction of A=B.a = ( i+2j+3 I?). (g i— % J +§ l?)
_(2-4+43) _ 1
3 3
20 A=1+2 j+3k and B = 2i — j + 2 k. Find the unit vector perpendicular to both a
and B.
Answer:

We know that the (/T X E) vector is perpendicular to both A and B. Hence the unit vector in
that direction is

(xB)
n=+-—5——=-
|4 % B|
- - i j E ~ =~
Now,AXB=|1 2 3[=i4+3)—-j2—-6)—k(—1—-4)=7i+4j—5k.
2 -1 2
7t + 4f — 5k 7%+ 4f — 5k
NG )
V49 + 16 + 25 V90
21. Show that the vectors A = i — 2 j + k and B = —2i + 4j — 2k are parallel to each other.
Answer:
- - ,i j E ~ —
AXxB=|1 -2 1|=i4-4)—-j(-2+2)-k(4—-4)=0
-2 4 =2
Hence they are parallel.
22. Show that Ax (B x C) + B x (CxA) +C x (AxB) = 0. [CU 2003, BU 2017]

Answer:
Following the vector triple product result,

Ax(BxC)=B(A.C)-C(4.B),
= Ax (BxC)+Bx(CxA)+Cx(AxB)
=B(A.C)—C(A.B) + C(B.A) — A(B.C) + A(C.B) — B(C.4)

=0
23. Itisgiventhatz+§+f=0.Showthath§=§xE:fo [VU 2018]
Answer:
A+B+C=0=> A+B=-C
S Cx(A+B)=-CxC=0
=CxA+CxB=0
>CxA=-CxB=BxC(C
Similarly,
A+B+C=0=> A+C=-B
= Ax(A+C)=-4AxB
> AxA+AxC=—-AxE
>CxA=AxB [+ Ax A = 0]
~AxB=BxC=CxA QED)
24. Using vector algebra, show thatsiﬁz Si:B = si:lc. [CU 2018]
Answer:

For the triangle in figure 19, the angle between d and C is B, between b and is 4, and
between @ and b is (m — C). For the same figure,
i+b=7¢
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25.

26.

27.

28.

=bx(d+b)=bx¢

=>bxd=bx?¢ [bxb=0]
= basin(rt —C) =bcsind

= asinC = csin4

a c
sinA  sinC
.. b c . N N > N N
= — X =aXc.
Similarly, we can prove SnB = smc’ starting from a (a + b) a X c . Hence,
a b c

sin A - sin B - sinC
(A+B).{(B+C)x (C+A)}=>
Answer:
(B+C)x (C+A) = (BxC)+(BxA)+ (@ xA) [+ ¢ x ¢ =]
“(A+B){(B+C)x (C+A)}=(A+B).{(BxC)+ (B xA)+(CxA4)}
A (BxC)+ A (BxA)+ A (CxA)+B.(FxC)+F.(BxA) +B.(Cx A)
=A.(BExC)+B.(CxA) [A(BxA)=A4(CxA)=B.(BxC)=B.(Bx4)=0]
=24.(B x () [+ B.(Cx A) =4.(BxC)]
It is given that T X b=¢xband7.d = 0;d.b # 0. Find out 7" in terms ofa, b, and ¢.
Answer:

It’s given that, 7 X b =&x b
= dx (Fxb)=dx(xb)
= 7(d.b) —b(@.7) = d x (¢x b)
> 7(@.b)=dax(éxb) [+ (F.d) =0]
@x (éxb)

U
1
I

(@.b)

A rigid body is rotating with 5 unit angular velocity around an axis parallel to the vector
(4f — 2k). The axis passes through the point (i + 2j — 3k). What would be the velocity of
a particle on the rigid body at the point (31 — 2j + k)? [BU]
Answer:
Angular velocity |@| = 5 units. Unit vector in the direction of the rotation axis:

o 4-3k 1, ~

n=m=§(4j—3k)

@ =wh=4 -3k
Now the direction vector from (i + 2j — 3k) to (3t — 2j + k) is:
7= (31-2j+k)— (1+2]—3k) = (20— 4f + 4k)
Hence, the velocity of the particle at (31 — 2] + k) is:

it j k N
P=wx7=|0 4 —3|=40i—6f+ 8k units.

2 —4 4
The force F=3i— 2j — 4k, acts on the point (1, —1, 2). Find the moment of the force
with respect to the point (2,—1,3). [VU 2018]
Answer:

Let’s say the vector from the point A = (2,—1,3) to the point B = (1,—1,2) is
f=0-j+2k)-(21-j+3k)=-1—Fk.
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~
A

i k
-1 0 -1
3 -2 -4
~ 7 = (=2)2 + (=7)% + 22 = /57 units.

29. Find the unit vector (1) in the direction perpendicular to the plane containing the

The moment 7 = (7 x F) = = -20—7j + 2k

vectorsA = 3i — 2j + 4kand B = i + j — 2k. VU 2018
Answer: [vU 2018]
. AXB
n=+4+—s—s

|A % B|
bd - Ii j k ~ N
AxB=|3 Z2 4|=10j+5k>|AxB|=v102+52=5V5
1 1 =2

\/_(10]+5k) +— (2]+k)

30. Find a. (ﬁ’ xy)ifa=(-2,-2,4), 8 =(-2,4,-2), andy = (4,—2,—2). Explain the

geometric significance of the result. [VU 2018]
Answer:
. -2 -2 4
a(Bxy)=[-2 4 =2[=0
4 -2 =2

This means that the three vectors are coplanar.
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2. Vector Differentiation

a. Introduction

Let us recollect the first principle of differentiation of a real-valued function y = f(x) of only one

variable x. The rate of change of y with respect to (w.r.t.) x is defined as:
= =2 - L ()
y dx dx

 fx+h)—f(x)

im
h—-0 h
Here, we will extend this definition to vector-valued functions of single and multiple variables.

b. The Ordinary Derivative of a Vector

N
v, A vector A is a function of a scalar variable t (let’s say

-
time) in a specific interval or region, when there exists a

value of /T(t) for every value of t. If with a change from ¢t
to t + At, the vector changes by Aj, then the rate of
2 change of A with ¢ is:
AL At + At) — A(t)
At At

Figure 20

)

e . " A . .
For an infinitesimal increment of At — 0, the limiting value of A—': w.r.t. t is called the ordinary

derivative of the vector (the derivative exists when the limit exists):

dA MDA A(t+AD) —A(t)
At AtSO AL AtSo At

. dA . . . . N dA L
Since o itself is a vector and a function of t, we can define a derivative OfE w.r.t t. This will be the

d?2A _d (dA
dt  dt\dt

Thus higher-order derivatives are defined.

second derivative:

N

Cartesian Coordinates: If a vector is expressed in terms of its Cartesian components, A = A, i +
Ayj+ Ak, then

dA _dA, ~dA,  dA,_

arar T @) T
C. Some Important Properties of Ordinary Derivatives of a Vector:
7. Sum/Difference: If A and B are both differentiable vectors, then % (AT + §) = i—': + i—f.
Proof:
d - o At +At) + B(t + A)Y — {A(t) + B(t
—(AiB)=lim{( ) £ B( )} - {A@® £ B}
dt At—>0 At
. A(t+At)—-A(t) . B(t+At)—B(t) dA dB
= lim + lim =—+—
At—0 At At—0 At dt dg

8. Scalar Product: Ifff and B are both differentiable vectors, then % (ff §) =A—+—.B
Proof:
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+—.B = (A, 1+ A,f + Ak). - T

de dA BA dBy . dB, .
dt = dt

dA, . dA, dAZA X X -
+<d i+ dt]+dtk .(Bxt+ Byj + B,k)

(4 9B, By B\ (dA.  d4,  d4,
S\T* de ydt Z dt dt * dt Y dt *?

—(A de+dAxB>+ 2 dB,, +dAyB +<A dBZ+dAZB>
S\ de o dt yd dt 7Y Zdt  dt ?

d d d d, -
=—(AxBx)+—(A B )+E(AZBZ) =—(AxBx+A B, + A,B, ) =—(A.B)

9. Cross Product: /f A and B are both differentiable vectors, then —(A X B) =— >< B+4 >< —
Proof: Say,A Ayi+Ayj+ A, kandB = B,i+ B ]+sz.Then
i j ok
AxB=|Ax A, A,
By B, B,
PR i )i k | ¢ ik
d, . o d
:>—(AXB)=—Ax A, A,|= dA, dA, dA, Ay Ay, Ay
dt dt dt dt dt dB, dB, dB,
By B, B, B B B —x Y
x y z dt dt dt
dA B+ dB
=— X X —
dt dt

10. Product of a scalar and a vector: /f Aand ¢ are respectively a scalar and a vector and both are
differentiable, then i (qb A) = ¢ d_A @ A

Proof: SayA A+ A ]+A k, then[ dl—d—j—ﬂ=0]

dt ~ dt  dt

- d d d -
() = S (BAT+ @A) + 94, k) = @A+ (94,)] + 2 (BA)R
=i(d_¢Ax+ dhy ) <d¢A +q§ )+k(d¢ +¢%)

dt dt dt dt dt
dA d¢ .
Satar

Corollary: If ¢ = constant, = d/dt (p)=0>

d ( /f) _ ., dA
i P =g
11. Scalar Triple Product:
Derivation: Say, A = At + Ayj+ Ak, B = Byi+ Byj+ B,k and C= Cel+Cyj + C,k. Then

A, A, A,
/T. (§ X 6) = Bx By BZ
Ce C, G
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A, A, A,
d - P - d
=>—[A.(BxC)|==|Bx By B,
dt L
x y z
dA, dA, dA,| 14x 4y, A, A, A, A,
_|dt dt dt dB, dB, dB, B, B, B,
=B, B, B |7 7 |7
x % z dt dt dt dc, dc¢, dc,
G G G G & Gl lae ar dt

<

— -,

B R W AV I -V
Tdt’ "\ dt ' dt
12. Vector Triple Product:

L (B )] = S B ) 4 T (B ) 4 i (B
E[x(x)]_ax(x)+ x| =X + A X x—

D. Partial Derivatives of Vectors:

Suppose Ais a vector depending on more than one variable, say x, y, z for example. Then we write

A= /T(x, ¥, z). The partial derivative of A w.r.t. x is defined and denoted as follows when the limit
exists:

0A ) /T(x + Ax,y,z) — j(x, Y, Z)
— = lim
Ox Ax-0 Ax

Similarly, the following are the partial derivatives of Aw.rt. y and z, respectively, when the limits
exist:

0A ) /T(x, y+Ay,z)— j(x, Y, Z2)
— = lim
dy  Ay-0 Ay

0A ) /T(x, Y,z +Az) — /T(x, Y, Z2)
— = lim
0z Az-0 Az

The remarks on continuity and differentiability of functions of one variable can be extended to two
or more variables. So, if4 = /T(x, v, z), and the variables change infinitesimally to x + dx, y + dy,

and z + dz, then the total infinitesimal change in A:

¢. Scalar and Vector Fields
‘ When a quantity changes from one point to another
in a region of space, it can be expressed as a
. function of position in that region, and that region is
then called the field of that quantity. These are of

two types:

. Scalar Fields: When the value of a scalar
W quantity ¢ (it may be a dimensionless mathematical
number or a physical quantity) changes
Figure 21 continuously from one point to another, e.g. with
By Lucas Vieira - Own work, Public Domain, X, Y, and z in the physical space, then ¢ = (j)(x, v, Z)

https://commons.wikimedia.org/w/index.php ?curi
d=20462138
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is the field of that scalar.
In Figure 2 there is a scalar field such as temperature, electric potential, or pressure, where
the intensity of the field is represented by different hues of colors. Clearly, as the field is

uniquely determined by the magnitude of the scalar at each position, it is independent of a

coordinate system.
é ~~b~.v~
% = \
A(x,y,z), then every point the corresponding region ' 3
has a specific vector (instead of a number) associated  ~==i . ' '

with it. In terms of coordinates, a vector field in n-
dimensional space can be represented as a function

e Vector Fields: In this case, if the continuously Q"M‘

changing quantity from point to point is a vector A= Q\

4 "F/gure 23

\ \\ \ \ R S e A that associates an n-tu ple Of By Newton Henry Black - Newton Henry Black, Harvey N. h“
b - o . *IDpavis (1913) Practical Physics, The MacMillan Co., USA, p. X

NN ™~ >IN real numbers to each point of 242, fig. 200, PublicDomZ/n, ’

\ \\ \ \ NN e A s . https://commons.wikimedia.org/w/index.php ?curid=73846

VANV AN s - -y 4 thedomain (e.g. Ay, Ay, A, for

1 : ‘, : : ‘ ' : : three dimensions). This representation of a vector field depends on

' ' ¢ \ . . . .

/ /) J /7 - -~y thecoordinate system, and there is a well-defined transformation law

/A ¥ ¥ /s~ — ~~ N inpassing from one coordinate system to the other.

":; 5 "; :: ; : : : :: : :\\ In the adjacent figure (Figure 3), we see a two-dimensional vector field

#Figure 22 . A=sinyi+ sinxj. Examples of a vector field are electric field,
By Jim.belk - Own work, Public Domain, . . . . . .
httpsy//commons.wikimedia.org/w/index.php? > Magnetic field, gravitational field, etc. In Figure 4 we see the scattered
curid=8008790 . a1y . . .
iron fillings rearranging themselves around a magnet, depicting the
magnetic field. We call them magnetic field lines.

d. Vector Differential Operator

In mathematics, an operator is generally a mapping or function that acts on elements of a space to

produce elements of the same or other space. The vector differential operator
- 0 d J - d Jda .0

=al+@]+£k=la+]@+ a

is called Del or Nabla. For most cases, this operator has properties similar to that of ordinary vectors.
In its current form, it has no meaning, as it has not been applied to anything. To understand its effect
and meaning, we need to ‘operate’ it on a scalar or a vector.

A. Gradient

Let ¢(x, y, z) be a scalar function defined and
differentiable at each point (x,y,z) in a
certain region of space (i.e. ¢pdefines a
differentiable scalar field). Then the gradient
of ¢, written ‘'V@’ or ‘grad ¢’, is defined as

T v (6+ i Ea)
'-'_-.".__"-"_ 3 '---:‘.-‘.'..'t‘. ¢ ! ]ay aZ ¢
e e _,00 .00 .00
N e Yax oy o

D= In Figure 5, the gradient of the function
Figure 24

_ 2 202 : .
By MartinThoma - Own work, CCO, f(x’ y) - (COS x + cos y) Is depICted as
https://commons.wikimedia.org/w/index.php ?curid=71375503 a projected Vector fleld on the bOttom plane.
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Note: del, operating on a scalar field, creates a vector field. The direction of the gradient of a
function denotes the direction in which the function changes maximally and the magnitude of the
gradient shows the rate of change of the function w.r.t position in that direction.

Figure 25
http://15462.courses.cs.cmu.edu/fall2018/lecture/vectorcalc/slide_024

Directional Derivatives:
ZA How do we think about derivatives of a
' VF (x4, Yo» Z0) function which has multiple variables?
Let’s say we have a function f (x4, x5).

tangent plane

/.4', R We can cut a slice through the function
£ : PO ), & along some line, i.e. some arbitrary
4 \ N direction. Figure 25 shows this function
LE
™N
g \\ which is cut twice, along the direction of
i PIE X two different vectors U and ¥,
I e 0 i ‘C == . respectively. The directional derivative of
Va S 1 f at a point with position vector X, in the
X & Figure 26 e direction of 7 is

https://www2.math.tamu.edu/~glahodn SREELIT
y/Math251/Section%2012.6.pdf

fGG +et) — fG&) _ (i +eut, xd+eu?) — fxd, )

& e-0 &

—> .

Dgf (xo) = lim

£-0

where ¢ is a small increment in the direction of 4. Similarly, we can define D3 f as well.

Given this definition of directional derivatives, the directional derivative of a scalar function

¢(x,y,z) in the direction of a vector Ais D ;¢. If the unit vector in the direction of dis@ = /T/HL
then

D;p =Vo.a

In other words, the directional derivative of a scalar function ¢ (x, y, z) at a point (x4, y1,2,) in the
direction of a unit vector fiis D4 ={ v }.ﬁ
nd) ( ¢)(x1,y1,zl)
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B. Divergence
Suppose A(x, y,z) = A, (x,y,2)i +
Ay(x,y,2)] + Az (x, y, 2)k is defined and
differentiable at each point (x,y, z) in a region
of space (i.e., A defines a differentiable vector
field). Then the divergence of?f is defined as

V’/T—(“a+Aa+fca) (Al +Ayf

=\ Mox ]6y 9z) Pt T Y]
04, 04, 04,
+Azk)_az+6z+6z

Hence, the divergence of a vector is a scalar
function.

Note: V.A+AV. So, while Aisa vector, V.A
is a scalar but 4.V is an operator.

'
!

S T A et Y A
Bl N\ V| S 2 es
B\ \ V) )P ma

B\ N~
..-“\“.
l"\\.

Figure 27
http://15462.courses.cs.cmu.edu/fall2018/le

Flux:

Figure 28

By Chetvorno - Own work, CCO,
https://commons.wikimedia.org/w/index.php ?curid=82743
721

the surface.

component of the field, the dot product of F(X) with the unit normal vector (%) (blue arrows) at the
point X multiplied by the area dS. The sum of F.ndS for each patch on the surface is the flux through

cture/vectorcalc/slide_039
In vector calculus, the flux ofa\

vector field is a scalar quantity,
defined as the surface integral of
the perpendicular component of
a vector field over a surface. To
calculate the flux of a vector field
F (red arrows) through a surface
S, the surface is divided into
small patches dS. The flux
through each patch is equal to
the normal (perpendicular)

Divergence of a vector field signifies the
outward flux per unit volume. In Figure 8 we

have superposed pictures of two fields. The first

one is a vector field A represented by arrows of
varying lengths. The other is a scalar field
representing V. ff, with positive to negative
values of it represented by a shade from white
to blue. Clearly, there is a large outward flux at
one point (white region) and a large incoming

V- V<l V-v>0 V:v=1(

bt A lp  map

> s ¢ —— . - .
; - A " / l \ ~ - -
Figure 29

https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives/divergence-and-curl-articles/a/divergence

flux at another (blue region). The first one is called a source and the second one is called a sink of the
vector field. When V. 4 = 0, the field is called solenoidal.

MATHEMATICAL METHODSANDELECTRODYNAMICS | Gen-Sem-1 (CBCS)



Suppose A(x, y,z) = A, (x,y,2)l + Ay(x,y,2)] + A, (x,y,2)k

P e RACRITH
I 4 & 7 vo vo-a-an DY —
S S PP LR Wy defines a differentiable vector field. Then the Curl of A is
A4l e - NN . .
T g5 s .1 defined as:
4 4 4 o
4 i VxA (A6+Aa+ka> (Al +Ayf + AK)
by ! XA=l—+]—+k=—) x (A,
S ax 1oy T Nag) T\ T A T A
Y Py N A T
B Wi Nw aiw e, S K ey l ] k
RR SN ar sy ror ) a a a
L B0 T T W U NS Fr o = |— —_— [—
L R, T T e 25 ¥ ox Jdy 0z
Figur;_??); o el ae Ax Ay Az
By Lood t English Wikipedia, CC BY 2.5, .
h{tpi;/sgr:mc’:)ifvikirriezz,al:g/w/index,php?cur/‘ A AZ aAy A an aAZ I’é aAy an
o -t dy oz 9z  ox + ox  dy

. . a
Note: In the expansion of the determinant the operators — must
dx; Figure 31

preced e A . http://mathonline.wikidot. Axis of Retstion
14 com/the-curl-of-a-vector-

The curl of a vector field at a specific point is also a vector, whose

length and direction denote the magnitude and axis of the

maximum circulation of the field calculated at that point. The curl

of a field is formally defined as the circulation density at each

point of the field. Figure 11 shows a 2-dimensional vector with a —

uniform curl. A vector with zero curl (V X A = 0) is called an
Irrotational vector.

D. Some Important Properties
We have already seen that gradient of a scalar ¢ and curl of a vector A are both vectors. Hence we
can calculate the divergence and curl of both of these. Similarly, as the divergence of a vector is a

scalar, we can calculate the gradient of that.

o Div.Grad.¢ =V.(V)

.0 0 .0\ (.09  0¢ A6¢>_62¢ %¢p 0%¢
(155, ) (15 + 15, +05,) = G+ 32 +
92 9% 02
=l—F—+— | = V?
<6x2+6y2+622>¢ ¢
Here, V2= (2 + 2 + 2 s called the Laplacian /Laplacian Operator, which s a scal
ere, V2= (52t 5,7 T 5,2) is called the Laplacian /Laplacian Operator, which is a scalar
operator.
. Curl.Grad.¢=Vx(V¢)
i ] k
- (.0 0 _0¢ 9 9 9
:VX<’$+10_+"5)= dx dy 0z
Y op 99 09
dx Jdy 0z
-5 @) =G EG) - =G HEG) -5 G
-t dy \oz dz \dy J 0z \0x dx \oz dx\dy/ Jdy\odx
92 92 02 02 [ 0% 02
(D020 (e 06 (0% 0%\ _,
dydz 0zdy 0z0x 0x0z dxdy 0yodx
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e Grad.Div.A = V(V X)

—(A6+Aa+fca) aA"+aAy+aAZ =Doitath
B lax ]6y 0z/) \ 0z 0z oz | o tbathome
. Div.Curl.szV.(VxA)
17 j k1
_(A6+A6+E6) g a9 0
“\'ox ey " "9z) |ox 3y oz
A, A, A,
A

(04, 0A, _(0A, 04, ~ (04, 0A,
){(6)} 62) ](az_ax)+k<6x_6y>}
=i<6AZ_6ﬂ>+8(6Ax 6A>+i<6ﬁ_8ﬁ>
dx \ dy 0z dy \ 0z dx 0z \ d0x dy
_ 0?4, 0%°A, N 0%A, 0%4, N 0*Ay  0%A, _
0xdy 0x0z 0ydz dydx 0z0x 0zdy

o Curl.Curl. 4=V x (V X /T) = V(V/T) — V24

This expression does not help us much, other than defining a Vector Laplacian V24 =

(V2Ax, V24, V%4,).

# VZA =V(V.4) -V x (V x 4)

E. Other Important Properties

0 a .0 . 0
= (i_ +i—+ k—) (A L+ PA,] + pAk) = —(qux) +5 (gbAy) +o (q)AZ)
—¢<6A aAy+aAZ>+(A a¢+A 0¢ Aa—¢)

0z 0z ax Yoy 79
_ ¢ ¢ ~0¢
= (V. A) + (AL + Ayf + A,k). (1 PR Jo,t a_ = ¢(V.A) + 4.V
o Vx(pA)=VpxA+¢Vx4 (Proveth/sl
. V(Zx§)=2(ﬁx§)+§(ﬁx2) (Prove this)
e. Solved Questions
31. If A = xi + y?j + 23k . Find dA
Answer: A = xi + y2j + z3k.
A oAy oA o
- ax_l,ay—ZyJ,and 5, = 32k
Hence, the change in Ais:
d/f—aAd +aAd + 8 47— tdx + 2ydy + k 3224
—axayyaz—Lx]yy z%dz
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32. Show that V([) is a perpendicular vector on the plane denoted by ¢p(x,y,z) = c(cisa
constatnt)
Answer: z
Let’s say P is a point on the plane ¢(x,y,z) = c,
with coordinates (x, y, z). Hence, the position

Tangent plane at P

vectorof Pis# = x i + y j + z k. So, the vector P
d¥ = dx i + dy j + dz k denoting the infinitesimal
change in 7, lies in the tangent plane to the plane ¢
at P.
Now,

z=f(x,y)

0 o 0 o
d - d _r d _r d ttps.//skeptric.com/derivative/ y
L M P x

.0 Jd .0 R R ~
= (La+]@+k£).(dxl+dy]+dzk)
= (V¢).d7 = 0
[ ¢(x'ylz) =c= dd) = 0]
i.e. (V(b) is perpendicular to d7 (for any d7 ). d7 lies in the tangent plane and thus Vd) must
be perpendicular to the tangent plane itself = the gradient is perpendicular to the surface
¢(x,y,2) =c.
33. Expand and simplify the form of V(V X)

34. If p(x,y,z) = xy*23, then find V¢ at the point (4,—1,1)

Answer:
o(x,y,2) = xy?z3, hence —- ¢ yzz3 — = 2xyz3, and Z—f = 3xy?z?
“ Ve = ia—('b j% +k 6¢ y2z31 + 2xyz%] + 3xy?z%k

2 (V) g yqy = -8+ 12k
35. If p(x,y,z) = x*y*z?, then find the directional derivative of ¢ at the point (1,—1,2) in
the direction of the vector (i — 2j + 2k).

Answer:

d(x,y,2) = x?y*z* hence —ny 72 ——2x yz?, and ¢—2x y%z
- 0 0 ~
Vo = ia—¢ + % + k6_¢ = 2xy?z%0 + 2x%yz?] + 2x?y%zk

2 (V) gz = 81— 8] + 4k
Now the unit vector in the direction of (i — 2j + 2k)
i—2j+2k 1-2j+2k
Vi+4+4 3

Hence, the directional derivative of ¢ (x, y, z) at the point (1, —1,2) in the direction of 7i

© . o [(t-2+ 2k
{(V¢)(1'_1'2)}.n = (81— 8j + 4k). <T>
841648 32

~

n=

3 3
36. ff =xi+yj+zk findV(3). [cU 2014]
Answer:
Method 1:
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G20 -2 20+ 20
6xl 6y] 0z r_axrlayr] dz \r

SimiIarIy,%(%) = —r%and aa_z(l) —_Z

VG) - (_:—3)i+(—3—3)j+(_:_3),; _ _XHJ;—Z*'Z’E: _;3

r
Method 2:
We know Vr™ = n "2 7 (see the next problem)
heren = —1.

() = cnerni= -4

r r3
37. Show that V™ = n1r" 2 7.
Answer:

— — n — 2
vt =v (\/x2 +y2 + zz) = V(x2 + y2 + z2)2
0 n dJ n
N o) 2 2y5 ) 7 2 2 2
—ax((x +y +Z)2)l+—ay((x +y +Z)2)]

0 ny o
I ((x2 4 v2 4 22
+az((x +y +z)2)k
_ (M. 2 2 2N2-1 s (M2 2 g .
—(z(x +y° +2°)2 2x)1+(2(x +y° +2z°)2 Zy)]

n L} 7~ n-2, . . ~
+(E(x2+y2+22)2 22)k=n(x2+y2+zz) 2 (xi+yj+zk)
=n(r)" 27

38. Find the Directional Derivative of ¢p = G) along7? =xi+yj+zk.

Answer:
qu = —ris (from problem 6 above)
Hence, the directional derivative of V)(;b in the direction of 7
7 T 1
=V<;br——r—3 f=—r—3ff=—r—2
39. Iff=xi+yj+zk, find (V.7).
Answer:
- a, 0, 0. R R - 0 0 0
V.r=(al+@]+5k>.(xl+y]+zk)=a(x)+@(y)+£(z)=1+1+1=3
40. IfF = xi+yj+zk, find (Vx 7).
Answer:
ij k
foz(%i+;—y}+%l€)x(xi+yf+zl€)= aa_x aa_y %
X y z

_A(az ay)+A(ax az>+k(ay 6x>_0
~ "oy a2/ "\az " ax ox ay)
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41. If w is a constant vector, T is the position vector, and V = w X T, then show that w =

>(V xB). [VU 2011]
Answer:
Let’s say that the cartesian components of the vector @ are respectively w,, Wy, and w,.
Then,
i 7k
V=6X7=|w, 0, wl= H(wyz — w,y) + jf(wx — wyz) + k(wyy — wyx)
x y z
I i j k |
- 1 d 0 d
209 =31 & 3y 5

(wyz — wy) (wx —wez) (wyy — wyx)
d(wyy — wyx) 0(w,x — w,2)
=i )

~>

0y
. (a(wyz —wy) 0wy — a)yx))
+]J -

0x

LB a(wzx — WyZ) a(wyz - wzy)
Oy

1

E[ Wy + wy) + j(w, + wy) + k(w, + w,)] = & (QED)

42. If w is a constant vector, T is the position vector, and Vv = w X T, then show that V.o=0
[VU 2012]
Answer:

©V.(AxB)=B.(VxA) -4 (VxB),
V x # = 0 [see problem 10],
and V X @ = 0 [@ is a constant vector],
V=V (@x7)=0a.(Vx7)—7(Vx )
=0-0=0
43. IfA = x2z i + 2y32% j + xy* k, what is V. A at the point (1,—1,1)?
Answer:
U A — 4 2 0 3,2 0 2y — 2,2
V.A —a(x z)+@(2y z )+£(xy ) =2xz+6y°zc+0
“V.A|, L, =2+6=8
44. More problems to come...
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3. Vector Integration

a. Introduction

The reader is expected to be familiar with the integration of real-valued function f (x) of one
variable, especially the indefinite integral

[ reo ax
and the definite integral on a closed interval

fbf(x) dx

Here we extend these definitions to vector-valued functions.

b. Ordinary Integration
Let’s say /T(t) =1A,(t) +]A4,() + k A,(t) is a vector function of a scalar variable ‘t’, where Apis
the component of 4 in the direction of the axis ‘p’. Then the indefinite integral of Aw.rt. tis

fﬁ(t) dt = f[iAx(t) +7A,(0) +kA,@®)] dt = ifo(t) dt +ijy(t) dt +EfAZ(t) dt

. L . d(Bw)
If there exists a vector function B(t) such that A(t) = d¢» then
f/f(t) dt = B(t) + ¢

where C is an arbitrary constant vector (independent of t), and the definite integration
b - b - — b - -
j A(t) dt = f d(B®) = (B®) +0)|, = B(®b) - B(a)
a a

c. Line Integral

e s, SUPPOsE 7(t) = x(t) i+
Figure 32 (vector) tecwr y(t) j+ z(t) k is the position
Operator vector of points P(x,y, z) and
Lovoshd' mesay suppose 7(t) defines a curve
¥ . C joining points P;and P,
IF(f)df wheret = t; and t,
c. respectively. We assume that
= - C is composed of a finite
F(r) p&?;f::;:::;?é:w:m number of curves for each of
which #(t) has a continuous
derivative. Let F (x,y,z) =
E(x,y,z2)I+E(x,y,2)]+
F,(x,y,z) k be a vector
function of position defined
and continuous along C. Then

the integral of the tangential component of F along C from P, to P,, written as
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> PZ—)
fp(?).df:f F(F).d?=fodx+Fydy+FZdz
c Py c

is an example of a line integral.

Quantity Quantity

{Vector) [Vector)
If C is a closed curve (we

Operator

suppose a simple closed curve, pneer Product
. re - . Figure 33
i.e. it doesn’t intersect itself gure "
anywhere), the integral around C x ]'—3 (f) ‘ d’—o
is often denoted by ‘ ﬁ*(;.) '

C<

fﬁ(?). dr = ngxdx + E,dy
+ F,dz

Path(Curve) along which the
integration is performed

Hence, the line integral of a
vector function is a scalar

quantity. When F(7) is a force
on a particle moving along C, this 4’

line integral represents the work “

done by the force. In Fluid . 5 >
dynamics and aerodynamics, o

where F represents the velocity of the fluid, this integral is called the circulation ofﬁ about C. In
general, any integral that is to be integrated along a curve is called a line integral. Such integrals can
be defined in terms of the Riemann sum (limiting sum) of elementary calculus.

Some Comments about Functions: (httpz//www.sharetechnote.com/hrm//Calcu/us_/ntegrat/’on_une.bak)

A 5 C
Figure 34
X Figure X The concept of line integral probably doesn’t sound very complicated to

you, but given a specific real mathematical application using line integral,
you probably don’t know what to do. A possible reason for this kind of
difficulty is not because of the concept of line integral itself, but because of
not knowing to represent the curve (path) in a function. The pre-college
definition of a function is consistent with Figure 16, where one-to-one or
one-to-many valued mappings are allowed, it fails in the case of Figure 17, which is a many-to-one
map (Figures from ginim Garten - own work,.). Now check out Figure 34. Plot A definitely can be a function since one value on the
x axis (independent variable) is mapped to one value on y axis (dependent variable). How about plot B? It cannot be: at
least according what we have learned in most of high school math. In this example, some x value maps to two different y
value. Same is true for Plot C. Here lies the problem. Most of the curves we deal with look like plot B or C. We can
represent this type of curves in one of the following type of functions:

i Parametric Function
ii. Vector Function
iii. Complex Function (Function with complex variable)

Now you may see why most of applications of line integral are given in the form of one of these.
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d. Surface Integral

Area as a Vector: \
The topic of vector areas traditionally causes considerable confusion for students. The starting point
is the idea that we can use a vector to describe some of the properties of a surface. It's easiest to

begin with a small (let's say rectangular) planar surface. The vector area dS we use to describe this
surface is defined as being perpendicular to the surface and having a magnitude equal to the scalar

area of the surface: dS = 7 dS. What is A?

Let S be a two-sided surface of any shape, such as in Figure 18. Let one side of S be arbitrarily
considered as the positive side (if S is a closed surface, such as a sphere, then the outer surface is
the positive one). A unit normal 7 to any point of the positive side of S is called a positive or outward
drawn unit normal.

Figure 37 In the figure, you see two
vectors in each segments of
the surface. One of the vectors
is the said positive unit normal
to each surface segment. The
other oneis in an arbitrary
angle 6 to the normal. Now |
want to take the inner product
of each red and blue vector
and sum them all. This
operation can be represented
in the form of an integral. This,
exactly, is a surface integral:

http://www.sharetechnote.com/htmi/Calculus_Integration_Surface.html

Cuantity Operator Quantity
(Vector) (Inner Product) [Vector)

J.J.F;ds
lfﬁ.d§=£jﬁ.ﬁd$=ﬂpcos€ds

Here ffs denotes integration over the whole surface S. Do you remember the way we defined Flux

in the Divergence section? That definition clearly tells you that the surface integral of a vector field
over a surface signifies the total flux through that surface and is a scalar quantity.

Other types of surface integrals are [J ¢ dS and JI F x dS, which evidently are vector quantities.

e. Volume Integral

Say there is a closed surface enclosing a volume V and Aisa single-valued and continuous vector
function in that volume. Then the following denote the volume/space integral of that vector:

fvffﬁdv
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f. Integral Theorems
Why were we studying these sorts derivative operators and integrals? The reason is that there are
some very convenient and useful relations between them. We’ll only study two of those here, but
that’s enough for now:

i. Gauss’s Theorem / Divergence Theorem
Figure 39 The statement of the theorem is: The surface integral
’;;f;;;/g/l"}zfvh;;“;nkgi’;zgf:;f’;:ﬁgsj:o"s/ x 4 of the normal component of a single-valued,

continuous vector function over a closed surface is

equal to the volume integral of the divergence of the
vector over the volume enclosed by that same closed
surface. So, if S is a closed surface enclosing a volume
element V, then

ﬂ/f.dfsz (7.4) av

TANE A o N )‘ A d A X AN B

The significance? This theorem helps us convert a

) . . . gl A P ’
volume integral into a surface integral and vice- “Cdve€ 7
/l ” » 4 4
versa. Consider Figure 20, which shows the 2-D :
» ” ” »
equivalent of the Gauss’s theorem. See, using the SN
.. - P
theorem, we do not need to calculate the “—F L L L #
) ) 6457 A W8 #2541 s 6X
(cumbersome) volume integral if we can somehow o 1 2
express the integrand as the divergence of some Figure 38 21 p
vector. In terms of a vector field, as the surface 2
. . https://philschatz.com/calculus- /
integral depicts the total flux through the closed bookfcontents/m5 3982 html

a4

surface, and the total flux through the surface C in
Figure 19 is zero (exactly same number of field lines come in and go out), the divergence of the
vector field in the enclosed volume is also zero. This is exactly what we read for a solenoidal field in
the Divergence section, right?

ii. Stokes’ Theorem / Curl Theorem

Figure 40 The statement of the theorem is: The
https://ximera.osu.edu/mooculus/calculus3Te H H H
xtbookBySection/shapeOfThingsToCome/shap Ilne Integral Of the tangentlal

€0fThingsToCome/diginstokesTheorem component of a well-defined vector
field along a closed curve C is equal to
© Q the surface integral of the normal
component of the curl of the vector

/]' (VX FlendsS = / Fedp = // (V x Fleids overthe surface enclosed by the same
= SR e curve C.

jéz.duff(vxz).ds*
¢ S

The beauty here is that the theorem does not say anything about the shape of the curve! It may be
of any shape and size, but the integral only depends on the closed curve!
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g. Solved Questions
More problems to come...
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Static Electricity
(Electrostatics)-1

Contents
11 (70100 o) 4010 2SI 57 SRS 34
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1.6.0 DESCIIPTION ...ttt sttt ettt e s e bbbt b et e b et ese e b ebena e b nee 41
1.6.2 DIfFErential FOIM c..cueiiiiicecee ettt 42
1.6.3 Coulomb’s Law from Gauss’s ThEOTem ........ccceevvueeiiuiriiieieieccieesieeeseeesieeeseeesveeesveessneeenes 43
1.6.4 Applications of Gauss’s TREOTEIM.......c..eecerireiriiieicireeee e 44
1.7 EIECtric POIENTIAL: ...t s 47
1.7.1 Potential as line integral Of FIeld: ........ooovirieeee e 47

1.1 Coulomb’s Law

Point Charge: A point charge is a hypothetical charge located at a single point in space (has no dimension).

I3 E Coulomb's law, or Coulomb's inverse-square law, is an
<—® @—' experimental law of physics that quantifies the amount of force
between two stationary, electrically charged particles. The
electric force between charged bodies at rest is conventionally

@FI_, f’_@ called electrostatic force or Coulomb force. The quantity of
electrostatic force between stationary charges is always described

r by Coulomb's law. The law was first published in 1785 by French

physicist Charles-Augustin de Coulomb, and was essential to the

5| =|R| =& |ql_x2q_2| development of the theory of electromagnetism, maybe even its

starting point, because it made discussing quantity of electric
charge possible in a meaningful way. (Source)

Sanhita Modak |  -PHY
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Statement: The magnitude of the electric force between two stationary point charges is directly
proportional to the magnitude of the charges and inversely proportional to the square of the distance
between them.

1 qiq —k 414>
T 4mey 2 ¢ 2’
0

E)ac

where k, is Coulomb's constant (k, =~ 8.9875517873681764 x 10° N m? C~2), q; and q, are the
signed magnitudes of the charges, and the scalar r is the distance between the charges. The force of the
interaction between the charges is attractive if the charges have opposite signs (i.e., F,,. iS negative)
and repulsive if like-signed (i.e., F,, is positive).

The physical constant €, (pronounced as "epsilon nought” or “epsilon zero"), commonly called the
vacuum permittivity, permittivity of free space or dielectric constant or the distributed capacitance of
the vacuum, is the value of the absolute dielectric permittivity of classical vacuum. Its CODATA value
is € = 8.8541878128(13) x 10712 F m~! (farads per metre), with a relative uncertainty of 1.5 x
10710,

_ [Dim.of charge]? _ [1 T]? _ —17-37472
o] = [Dim.of Force][Dim.of Lengthl> ~ [MLT-2][L]2 (ML

This equation is true only for vacuum. For any other medium,

1 q192
4me r?

Finea =

where e (permittivity) is a measure of the electric polarizability of a dielectric. A material with high

permittivity polarizes more in response to an applied electric field than a material with low permittivity,

thereby storing more energy in the electric field. In electrostatics, the permittivity plays an important

role in determining the capacitance of a capacitor. The permittivity is often represented by the relative
HYHvH Fvac € H H 1 H H

permittivity K, where K = b This is a dimensionless quantity.

med €o

Vector Form of Coulomb’s Law: Let’s say that there are two point charges g;and g, placed at
positions 77 and 7, respectively, w.r.t. the origin O of a Cartesian coordinate system. Position of g,
W.rt. q, isp; = 7, — ;. Now, if the relative permittivity of the medium is ¢, then the force on g,
due to q; is

1 414z £
dmege, 5 2V

A P ——
Fy1 =

where 5, is the unit vector from g, to g,. This is the vector
form of Coulomb’s Law.

Now, the force exerted on ¢g; due to g, is

F‘—’ _ 1 q192 7
12= 53—~ -~ 2 h2
0 4meEy € TS
— —
Here, 15 = 151 = 11| = |12l
As i, = — 1y, Fi, = — F,,. From the adjacent figure, it is clear that ry, = |75;| = |13 — 71]. SO

= 1 919>
12 = — >3
4meg €|, — 1l

(% —m).
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This clearly is a Central Force (acts along the line joining the centers of two charged bodies).

The law of superposition allows Coulomb's law to be extended to
include any number of point charges. The force acting on a point
charge due to a system of point charges is simply the vector
addition of the individual forces acting alone on that point charge
due to each one of the charges. The resulting force vector is
parallel to the electric field vector at that point, with that point
charge removed.

Now, the net electrostatic force F on a small test charge q, at
position 7,, due to a system of n discrete charges
(91,9293, -, qn) at positions 77,75,73, ...,7, in a medium of
relative permittivity e, is

n
= = - - - - qO q > e
F=F +F+F++E = zFi=4neoe Zlf_‘?lg(r—n)
7 T i=1 l

1.3 Electrostatic Field

g +q An electric field (sometimes

S\ abbreviated as “E” -field)

. surrounds an electric charge, and

@ | exerts force on other charges in

l the field, attracting or repelling

- T-» them. These are created by
&

(&

—®

.,gkft“‘ ““f“‘v
\ [1///

P—

i electric charges, or by time-
varying magnetic fields. When
created by stationary charges, it is
called  Electrostatic  Field.
rg Electric fields and magnetic
(a) () fields are both manifestations of
the electromagnetic force, one of the 4 fundamental forces (or interactions) of nature. On an atomic
scale, it is responsible for the attractive force between the atomic nucleus and electrons that holds atoms
together, and the forces between atoms that cause chemical bonding.

.

AN gL
AR A ST TN

h L‘Atlltltllll’l 4 4

-
»
OSSR AR

Definition: It is defined mathematically as a vector field that associates to each point in space the
(electrostatic or Coulomb) force per unit of charge exerted on an infinitesimal positive test charge at
rest at that point.

The Sl unit for electric field strength is volt per meter (I /m), exactly equivalent to newton per coulomb
(N/C)inthe Slsystem. 1INC™' = —— 2 = 1 Z0 =1 L =y m~L,

" 3x10% esu cm

We have seen from the last section that

n
=2 q q 3 —>
F= Zﬁ ——= -7
Treoe, LulF— 7
=
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n

PTG dmee LT
l=

P _[mrr]

. -3 7-1
“[E] ==t = M LT ),

1.4 Curl and Divergence of E

1.4.1 Conservative Force

Definition: A conservative force is a force with the property that the total
work done in moving a particle between two points is independent of the
taken path. Gravitational force is an example of a conservative force, while
frictional force is an example of a non-conservative force.

If a particle travels in a closed loop, the total work done (the sum of the force

acting along the path multiplied by the displacement) by a conservative force
is zero.

szchom,.dfzo

Now, § F.d7 = [[(V x F).d§ (Stokes’ Theorem).

= (V x F) = 0 for conservative forces.

142V x Eand V. E

Let’s check whether Electrostatic force is conservative or not:

S . . . - X X .z
F=fm#=f0)(ix+jy+kz)= N0q2(5+] 5 +k=3)

ik
. 9 0 o
VXF=aq:qz[gx ay 0z|=0

X y z

r3 r3 r3

Hence, electrostatic force is conservative as well as a central force (from earlier section). A central
force is conservative if and only if it is spherically symmetric. This also means that

tau

VXE=0

A conservative force depends only on the position of the object. If a force is conservative, it is possible
to assign a numerical value for the potential at any point and conversely, when an object moves from
one location to another, the force changes the potential energy of the object by an amount that does not
depend on the path taken, contributing to the mechanical energy and the overall conservation of energy.
If the force is not conservative, then defining a scalar potential is not possible, because taking different
paths would lead to conflicting potential differences between the start and end points.

F=-V¢
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For a point charge,

B B B

5 o, q 1, . ~ . . ~ q 1
fF.dr=4n€0fr—3(xl+y]+zk).(dxl+dy]+dzk)=4n€0fr—3(xdx+ydy+zdz)
A A A

B
. q J‘rdr J‘ . q 1]
" 4me, 3 4me, " A4meglry, 1R

PE = (ot k ) [ A5 kA = [ (2) 2 (2) 2 (5]

4mey \ Ox  ° dy dz 3 7rs r3l dme,lox \r3/ oy \r3/ 0z \r3
q |0 x d y a z
= e, |ox ) Rl e Bl S
0 (x2 +y? +z2)2 (x2+y%+2z%)2 (x2+y%2+2z%)2
-1 [3 3] =0 #0,y#0,z#0
4mey b3 r3] (x#0y=#0z%0)

This is true for all points in space other than the position of the charge (r = 0). There E - oo, hence V.E - 0.
Let’s apply the Divergence Theorem to this:

fﬁ(v E) d3r—§* ds 47:6()[(%?).(#51'719 do de ) Z%Z%fﬂpdsrﬂ?)

> VE=2 53(7)
€o

Here, p is charge density and [ §3(r)d3r = 1.

Remember, §3(r) — {Og :;8

1.5 Electrostatic Flux

1.5.1 Definition

In electromagnetism, electric flux is the measure of the electric field through a given surface, although
an electric field in itself cannot flow. It is a way of describing the electric field strength at any distance
from the charge causing the field. An electric “charge”, such as a single electron in space, has an electric
field surrounding it. In pictorial form, this electric field is shown as a dot, the charge, radiating “lines
of flux”. These are called Gauss lines. The density of these lines corresponds to the electric field
strength, which could also be called the electric flux density: the number of “lines” per unit area. Electric
flux is proportional to the total number of electric field lines going through a surface. For simplicity in
calculations, it is often convenient to consider a surface perpendicular to the flux lines.

¢:§.§:ﬂ§.d;
S

If the electric field is uniform, the electric flux passing through a surface of vector area Sis
® =FE.S=SE coso

E cos@ is the perpendicular component of the electric field.

Sanhita Modak |  -PHY



Dimension of flux: [®] = [M L3T~3171]

1.5.2 Numerical Examples

Two point charges of +5C and +15C are at points (2, —4,3)m and (=3,2,1)m
respectively. Find the force on the charge +15C.

Answer:
n=21—4j+3k; n=-31+2j+k

nT—T=-5i+6j—-2k
= |75 — 71l = (=5)2 + 62 + (=2)> m = V65 m
Hence, the force on the +15C charge is

— 1 5x15 . 9x10°x5x15 .
21=Em(—51+61—2k)1v= 3 (-5t+6j—2k)N
=1.288x10°(-5i+6j—2k)N

Show that the electric field £ = x i + y j + z k is conservative.

Answer:
T j kij
VxE=|9 9 9f_p
dx dy 0z
X y z

Hence, the field E is conservative.

If the field intensity at any point (x,v,z) is E = 6xy i + (3x2 — 3y2) j + 4z k, what
should be the amount of work done to take a positive charge from the origin to the point
(xlr Y1 Zl)?

Answer:
Work done
(x1,Y1,21) (x1,¥1,21)
= E.d# = f 6xy dx + (3x? —3y?) dy + 4z dz
(0,0,0) (0,0,0)

[3x2y + 3x%y — y* + 222] 0™ = 6xfys — yi + 22
Find the electric flux through an area of 20 units in the YZ plane, for the uniform electric
fieldE=6i+3]+4k
Answer:
As the field is uniform, electric flux
o= [[ Bas=E3
Now, s = 20 i sq units

Hence, @y = (6 1+ 3] + 4 k).(201) = 120 units

There is a charge of 17.7uC at the center of a spherical plane of radius 5 cm. What is the
amount of the electric flux through the spherical plane?
Answer:
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VI.

VIL.

VIII.

Sanhita Modak |

Avrea of a sphere of radius r = 4mr2. Here |E| =

4TT eorz '
> 17.7x1076C _
Hence, ®; = E.d5 = X 4nr? =L = S = 2x10°Nm2C!
4-1rsor2 g  8.854x10712C2N-1m—2

We see that the flux is independent of the radius of the sphere. This is a consequence of the
Coulomb’s inverse-square law.

Two identical particles of mass m and charge g are dangling from the same point with
two identical inextensible strings of length L. If each particle makes an angle 6 with
vertical, show that 4mgl? sin3 0 = g cos 0

Answer: T—

The adjacent figure depicts the stated problem.

2

According to the figure, Tsin0 = F = (BA)Z, : T

Again, BA = 2lsin

2
= Tsin3 9—?,

T cos = mg B < -
We get, after removing T, Tsin@ lA (BAS
4mgl?sin® 0 = q* cos 0 mg

Infinite number of point charges, each with charge g, are kept on the x-axis at points x
1,2,4,8, ... etc. what would be the field intensity at x = 0 for these charges? If the
charges are alternatively positive and negative, what would be the field then?

Answer:
_ (i+i+i+i+ Z( ny-2 = Z()
4Amey \12 22 82 T an TTEy TEy £
From the closed-form formula of infinite geometric series, We know B
a+ar+ar2+ar3+ar4+---00=Zar”=&, for|r| <1
n=0
S>14+r+r2+r3+rt+.0= 1ir
Hence
E=-2% x 1 =-9 (in the direction of negative x axis).

4TEy 1—% 3mey

In the second case,

e - RO
E = L _ 1.1 1. 0)= =) N (2
4neo(12 2T gt ) dmey | Ly \42 22 \42

1

n=0 n=0

_q 1 22 |_ 4 [E_i _q

4, 1_i 1_i 4Amey 115  15]  Smey
42 42

If the closest charge is negative, then the direction of the field would be to the positive x axis.

A square area parallel to the YZ plane is kept inside an electric field of intensity (2 T+

37+ 5k) NC. The flux through the square is measured to be 8Nm?C~*. What is the

length of one side of the square?
Answer:
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E=(2t+3j+5k)NC", S§=a?im? (a = length of a side of the square)
Hence, E.§ = 2a?Nm?C~! = 8 Nm2C ™!

=2a°=8=a=2

i.e., length of a side of the square = 2 m

Two point charges of magnitudes +100uC~* and —100uC~* are kept at two points A
and B of an equilateral ABC with length of each side = 10 cm. Find the Direction and
magnitude of the electric field at point C due to these charges.

Answer:
_q@ _ 100x1075x9x10° 7 N
= ameorz  (10x1072)2 9 x 10°N (along AC)
_100Xx107°x9x10°% 7 —
F, = oxiomz = 9% 107N (along CB)

As F; = F, , their resultant bisects the angle (180° — 2BCA) = (180° — 60°) = 120°.
Hence, the resultant F = F; cos 1220 + F, cos 1220 =9 x 107 x G + %) =9x 107 NC™!

The resultant will be directed parallel to AB, in the direction from A to B.

1.6 Gauss’s Theorem in Electrostatics:

1.6.1 Description

\\ /
N X 1 {

~—= X Gauss’s law can be used to derive Coulomb’s
— % >N law, and vice versa. There are two forms of
o 7/ the same law: the integral form and the
/‘7 / I \ N - differential form. These two forms are related
' through the Divergence Theorem. In words,
Figure 41 Electric flux through an arbitrary surface is the law states that:

proportional to the total charge enclosed by the surface.

Gauss’s law/theorem, aka Gauss’s flux
theorem, relates a distribution of electric
charge to the resulting electric field. First
formulated by Joseph-Louis Lagrange (1773)
and then by Carl Friedrich Gauss (1813), it is
now one of Maxwell’s four basic equations
of classical electrodynamics.

The net electric flux through any hypothetical closed surface is equal to gi times the net electric
0

charge within that closed surface, where &, is the absolute dielectric permittivity of the classical
vacuum.

A closed surface is a surface that is compact and without boundary. An easy way to remember a
closed surface is that if one wants to go from one side of the surface to the other side, one has to pass
through the surface (there’s no way around it).

The flux here is proportional to the enclosed electric charge, irrespective of how that charge is
distributed. Even though the law alone is insufficient to determine the electric field across a surface
enclosing any charge distribution, this may be possible in cases of uniform fields — the uniformity
demanded by some symmetry. Where no such symmetry exists, Gauss’s law can be used in its
differential form.

MATHEMATICAL METHODSANDELECTRODYNAMICS | Gen-Sem-1 (CBCS)



Proof: Let us take a closed surface S of any
shape. There is a charge g at the point O inside
this surface. Let us now consider an infinitesimal
part of the surface dS around the point P, where
PN is perpendicular to dS. The electric field at P

duetogat 0 isE = ——.L#and itacts
amey T

along OP. The solid angle subtended at point O
by the area dS is dQ. 6 is the angle between ON

and W?), i.e. the direction of the electric field at P.
Hence, the electric flux passing through the area
ds is

e S 1 ¢
d =E.d*=( —) Ad
0] S P, il (AdS)
1 q .,
" 4me, r2 (7.7)
1
_47reo 2 dS cos @

[+ #.A = cos O]
Hence, total flux through the closed surface S,

#E ds = # dS cos 6 = #db‘cos@ #dﬂ— x 4
¢= 4T rz cosv = 4Te 4 " 4me, g
S

- eq_o [ jSEf 0 = 4n]

Hence, the total flux passing through a closed surface enclosing a charge q is gi times the amount of
0

charge, i.e. g. If there are multiple point charges, the total flux would be proportional to the algebraic

sum of those charges:
- — 1 z
€ &=
l

Some notes about Gauss’s theorem:

1. Foranelectric dipole, Y; q; = 0, and hence, the flux due to a electric dipole = 0.

2. This theorem tells us that if there is no charge within the closed surface then flux through that
surface is zero. Zero flux does not always indicate zero electric field. For example, though
flux due to a dipole is zero, electric field due to that is non-zero.

3. We will see later that we can calculate the electric field at any point using Gauss’s theorem, if
only the charge distribution has some kind symmetry to it. This is not possible from
Coulomb’s law.

1.6.2 Differential Form

If p is the volume charge density at a region of space, then the flux around a closed surface S
enclosing the charged volume V is, from Gauss’s theorem,
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- — 1
Q:#E.d5=i=—fffpd3r.
€ &o
S 14

Now, from divergence theorem, ¢f E.dS = [[f (V.E) d°r.

Hence, fffV (V’. E- 8%) d3r = 0. This is true for any arbitrary V and S. So, we can write,

vE=2
€o

This is the differential form of Gauss’s theorem. In words, the divergence of an electric field at any
point is equal to the ratio of the volume charge density at that point and the permittivity of vacuum.
This is also known as the first of the Maxwell’s Equations of Electrodynamics.

If we define D = &,E, the law becomes V.D = p.

As the electric field E is conservative, V x E = 0. We can thus write E as the gradient of a scalar
potential ¢: E = —V¢.
Hence, V.E = £ = V.Vp = — £ Or,

=0 &o

p
V2= ——
¢ -

This equation is known as the Poisson’s equation. For a region which is electric charge free, this
becomes V2¢ = 0: this is known as Laplace’s equation.

1.6.3 Coulomb’s Law from Gauss’s Theorem

Coulomb’s law cannot be derived using only Gauss’s law,
since Gauss's law does not give any information regarding V x
E. However, Coulomb’s law is easy to prove from Gauss’s law
in presence of additional assumption that the electric field from
a point charge is spherically symmetric (this assumption, like
Coulomb’s law itself, is exactly true if the charge is stationary,
and approximately true if the charge is in motion).

Taking S in the integral form of Gauss’s law to be a spherical
surface of radius r, centered at the point charge g, we have,

$ras-Lopfas-1
€o €o
- — S S -
Here E.dS = E dS, as the magnitude of E is constant on every
point of the spherical surface, due to symmetry and both E and dS are directed radially outward, i.e.,

have the same direction.

As gﬁsﬁ = 4nmr?,

Ex4ml=ﬂ<:E= 4
I 4Amre T2

Now, if we put another point charge g, at the same distance r from g, the force acting on g, due to g
is,
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F=FEq= 4dmrer?

1.6.4 Applications of Gauss’s Theorem

I.  Electric field due to a point charge: The description is already there in the last subsection.
F=fp=—oa 7=_17
4dmrer? 4,3
Il.  Electric Field due to a uniformly charged long straight wire:
As the wire is uniformly charged, let’s say that the charge at
each unit length of the wire, i.e., the linear charge density is 1.
The job is to calculate the electric field due to this wire at a
distance r from the wire. If we imagine a cylindrical Gaussian
surface of length h around the straight wire, we find that due
to cylindrical symmetry of the wire, electric flux lines will
only pass through the curved Gaussian surface. Hence, the
total electric flux through the surface:

Gaussian

surface

There is flux only

/ through the
curved surface.
‘ # E.dS = E (2nrh)
S
Now, the total charge enclosed by the Gaussian surface
is Ah. From Gauss’s theorem,
Ah 1 21
y ‘ E 2nrh) =—=FE = —
e : —— £ 4mtey T
y
() E= ! Ef
dmeg T

The direction of E is radially outward.
I1l.  Electric Field due to a uniformly charged spherical shell: Let’s say that we have a (very) thin
spherical shell of radius R and center O. The surface of the
spherical shell is uniformly charged with surface-charge-
density . So, the total charge-content of the shell is g = 4nR?0.
The job is to find electric field due to g at the point P at a distance
r from the center of the shell 0. There are three cases here,
depending on the relative sizes of R and r. The figure on the left
£y shows the change in the electric field with change in r. The
reasons for this particular nature of E vs. r is discussed below.

|

-R (9] QR F e

a. Ata point outside the shell (r > R): If we imagine
a spherical Gaussian surface of radius r with a
center at O, then the electric field at any point on ’
this surface is same and the field lines cut the
surface at right angle. Hence, the total electric flus

through this surface, g, E.dS = E(4mr2). From
Gauss’s theorem,

G _AmR?*c R%c
E(4nr) = —= >FE=—-
o o r2eg p
- R?%
5E=—5f
gr
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b. At a point on the surface of the shell (r = R): Extending the
“ relations from the above case,

- R?c o
This is consistent with the observation that the electric field is
spherically symmetric.

c. At a point inside the shell (r < R): In this case, the Gaussian
surface lies completely within the shell. The whole amount of charge
now is completely outside the Gaussian surface (as it resides on the
surface). So, the charge enclosed by the Gaussian surface, g = 0. So,

(Gaussiay ; from Gauss’s theorem,
# Fas=L_
€o

S
V. Electric field due to a uniformly charged infinite plane surface:

Before we get into this, let us clarify something. It is a common practice in physics community to call what we are
going to encounter here as a ‘Gaussian
Pill-box’. A traditional pill-box may look
like the one on the right side, or it may be
circular, hexagonal or any other shape.
That is not important for us. The only
important general characteristic of a pill-
box for us is that its height is much
smaller than the area of its lid. That is it.
Sometimes we will consider a closed
Gaussian surface shaped like a pill-box, half-embedded in an actual surface, containing electric charge, like in the
figure on the left.

Gaussian
pillbox

E S In our present problem, we imagine an infinite
: s charged flat plane with surface-charge-
density o. We draw an (imaginary) Gaussian
pill-box at any place. The surface area of the
pill-box is A, and the depth is 2r. For ease of
understanding, consider the surface A to be a
square. Remember, following the definition of
a pill-box, r « v/A. As we see in the figure on
the left, as the infinite plane is uniformly

charged, all the field lines (E) extend
perpendicularly on both sides of the
plane. In the figure on the right, we £
now zoom in to the pill-box and
deliberately blow-up/stretch the pill- P
box for our understanding. It should E
be clear that the total charge enclosed

by the whole pill-box is due to the
cross-section of the plane by the pill-

box, i.e., g = gA. Using Gauss’s theorem, we can write,

-~ —  q gA
fras- Lo
€o €o

S
For all surfaces of the pill-box that are perpendicular to the infinite plane, E.AS = 0, where

AS is the area of any of those faces (area-vector of an area is normal to the area itself; hence
El E). If we call the parallel areas, respectively on the right and on the left as S; and S,
and the right side as positive direction, then S; = =S, = A. Thus, Gauss’s theorem becomes,
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- —> - —> — —_ - — O-A
#Eﬁ:ﬂﬂﬁ+ﬂ@@¢ﬂ4ﬁaﬁ=?-
S S1 S, AS 0
N = - oA - gA
> EA+(-E).(-A)+4x0=—>2|E|[A=—
€o €o
> |B| = == F=——n
2¢g 2¢g
where 7 is the unit-normal vector of the infinite plane.
V.  Electric field due to a uniformly charged solid sphere:
Let us consider that the solid sphere in consideration is uniformly charged, with volume
charge-density p. Just like the case of the spherical shell, if the
point P at which we measure the electric field is at a distance r
from the center of the solid sphere and the radius of the sphere is a,
then we have three case, just as earlier,
5 a. r > a: Here P is outside the sphere, at a distance r. The
& . electric field due to the sphere points radially outward (i.e.
A perpendicular to the Gaussian surface at every point), and from
~ spherical symmetry, is of constant magnitude on every point of the
surface at r. So, the total amount of flux passing through the

\ Gaussian surface,
(iau%ﬁu‘:n o N - N
surface d)E:#E.dS:lEl#dS:‘l-TETzlEl
S 1 S 4
= q
4nr?|E| = — = —x zma®
= 4mr?|E| e =5 <3 ma3p

o p a®
= |E| = 3_801"_2' (radially outward)

Or, in other words, outside the sphere, E o< 1/r2.
b. r = a: With a simple extension of the case above, it is

trivial to show that when r = a, |E| = 2 a.
0

c. r < a:Justlike in the case of the spherical shell, we
draw the Gaussian surface inside the sphere. Now, the
charge enclosed by the Gaussian surface is

4
q = gnr3p.
y . 4 Y 4 : v
|7‘I Using g = Ena3p, wesee  Jdussian surlace
3
r _qr
Now, from Gauss’s theorem,
' 3
o — r R
Eor ' #E.d5=q—= 1 = = 4mr?|E|
' & &a
* 14
/
Eo =——nr?
r & 3 p
& > Bl = £

(; 3‘c:O
Or, in other words, inside the sphere, E o« 7.
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1.7 Electric Potential:

1.7.1 Potential as line integral of Field:

If the electric field at a point is E, then the force on a test charge g, due to that electric field is F=
qOE. If the charge moves by an infinitesimal amount of dl because of the action of that force, then the
work done by the electric field on that charge, dW = F.dl= qoﬁ.ﬁ. Work done by the field to
displace the charge from point A to point Bis W = ff dW = qq ff E.dI. Hence the work done per

unit charge by the electric field is qﬂ = ff E.dl = the line integral of the electric field from point A to
0
point B.

~The work done by an electric field form one point to another is equal to the line integral of the
electric field between those two points.

We know that a static electric field is conservative, i.e., V x E = 0. As V x V¢ = 0 is an identity for
any scalar function ¢, we can write Easa gradient of a scalar function, i.e., E= —qu. The negative
sign is there so that we can define the potential with a correct sign. We will soon understand the
meaning of the negative sign.

Now, if dr' = (dx i+ dy ] + dz k) and Vgp = (521 + 527+ 22 £),

B B B
f E.dr= fﬁqbﬁz—f a—¢i+a—¢j+3—¢k).(dxi+dyj+dz12)
A A B A B
f —d +—dy +—d f
B A A
= f E.dr = ¢, — ¢p
A
c Where ¢p = electric potential of the electric field at a point P. Thus, the line

integral of a static electric field depends only on the end points of the path of
integration and is independent of the path itself.

A/_\B For a closed path, as shown in the figure (left), we can see that,

fﬁa= f E.dr + f E-E=¢A_¢B+¢B_¢A:0

D A B
(along ACB) (along BDA)

The next obvious question would be, what exactly is this potential? Think about gravity. Unlike the
force between a positive charge and another positive test charge, gravity is always attractive. If we
release a ball from point A (a higher point from ground), gravity acts on it and brings it down to (a
lower point) B. The work done by gravitational field is then the different between the gravitational
potentials between those points (qu’ - ¢§). To raise a mass against gravity (from B to A), we need to
work against gravitational field. We can, in principle, define a zero potential plane (most cases, the
ground) relative to which the potential for every higher point is defined.

For a repulsive force (such as between two positive charges), assume that the source charge/charge

distribution of the electric field is already there. Now to bring another positive test charge closer to it
(from B to A), we have to work against the electric field. But didn’t we have to work already against
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the field to bring that test charge to the point B? Sure! That is why point B also has a potential. It
seems common sense that there will no effect of the field at infinity (c0), and we can use infinity as
our zero potential point. We can then define the potential of any electric field of any point as the work
done to bring a unit charge from infinity to that point. From earlier, work done by the field,

fﬁ.d_r’=¢r—0=¢r
T

T
:~¢r=—f§.d_r)

The negative sign denotes that here, work is done against the electric field to bring the charge from
infinity to .

Similarly, the potential difference between two points, ¢p — ¢4 = — ff E.dr

dimofwork _ [ML?T™%]
dim.of charge [I1T] -

Dimension of electric potential = [ML?T—3171]

More Material:

1) Fact Factor Site

2) Dimensions of S.I units and quantities.
3) Bozeman Science (Video)

4) Lecture by Walter Lewin. (Video)
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https://thefactfactor.com/facts/pure_science/physics/coulombs-law/8731/
http://www.ebyte.it/library/educards/sidimensions/SiDimensionsAlfaList.html
https://youtu.be/yUPdtFqilXo
https://youtu.be/x1-SibwIPM4
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2 Magnetic Fields and Lorentz Force

We have seen in the previous chapter that a static charge generates static electric field, but not an
electric current. This is why there is no force acting on a static charge near a current-carrying
conductor (wire). On the other hand, a moving charge in the same place experiences a force (keeping
the charge static but the conductor moving produces a similar effect). This lets us hypothesize that
there is a type of ‘field’ being generated by the current-carrying conductor — which only affects a
charge in relative motion with respect to the conductor. Precise measurements prove this hypothesis
and we call this field a Magnetic field. Just as the electric fields are conventionally denoted as E,

magnetic fields are denoted as B. The net force acting on the charge in this case by both the electric
and magnetic fields is called a Lorentz force. The law was implicit in a paper by J. C. Maxwell
(1865), though later Oliver Heaviside correctly identified the contribution of the magnetic force and
H. Lorentz finished a complete derivation with the electric force a few years later (1895).

Zgg/;fojj;nﬂjﬁij;:;igtj;;;ﬁdCECX"rp = The electromagnetic force F on a test charge g with a velocity
¥ at a given point and time can be parameterized by exactly two

hp?curid=21249209
vectors E and B, in the functional form:
F =q(E + ¥ x B)

Clearly, in absence of the electric field, the force is

perpendicular to both # and B and its direction is determined by
the right-hand cork-screw rule of cross-product. As

F = |F| = qBvsing = B =

_ [MLT?]
= Bl =

qusin 0

= [MT2I71]
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https://en.wikipedia.org/wiki/Lorentz_force

The units of a magnetic field are respectively Tesla (magnetic field which, when applied to an 1C
charge, moving at 1m/s perpendicular to the field, exerts a force of 1N on the charge) and Gauss
(magnetic field which, when applied to an 1emu charge, moving at 1cm/s perpendicular to the field,
exerts a force of 1dyne on the charge) in ST and CGS units.

3 1N B 10°dyne dyne
" 1C x1ms™1  0.lemu x 100cms™1

1T o = 10*G

emu X cms~!

3 Biot-Savart-Law

3.1 Definition (pronounced: ‘by-oh-suh-vahr?)

A\ We came to know in the last section that an electric
dlis asmall | conductor creates a magnetic field. The next job

Sanhita Modak |

r is a unit vector

. |
piece of the wire | Kooy would be to know the how and how much of it.
T o o Named after Jean-Baptiste Biot and Félix Savart
.:-,/// & dB is into page. (1820), the Biot-Savart Law describes the magnetic
di b4 : field generated by a steady electric current in terms of
// . - '.'. I' th - - - - -
- - —_— 4 e magnitude, direction, length, and proximity of the
- T .
" g electric current.
'f A steady (or stationary) current is a continual flow of
charges which does not change with time and the
Figure 43: charge neither accumulates nor depletes at any point.
[t http://www.physics.louisville.edu/cldavis Unlike electric charges, there is nothing like a ‘point
If /phys299/notes/mag_biotsavart.html|

current’. Thus the law has to be written in a
differential form, in terms of an infinitesimal current
element. As shown in the adjacent figure, for a steady
current I passing through a conductor, the current

element corresponding the length element dl of the conductor is Idl. If the infinitesimal magnetic
field is dB due to the infinitesimal current element d1 at a point P, 7 distance from the current element

(where 7 makes the angle 6 with df), then,
|dB| o 1]dl]

|d§| « sin @ L |d§| -

I|df| sin 6
|7]2

. |7]2
|aB| OCW

=>|d§|=k

k is a proportionality constant, determined by the unit
of current. In SI system, k = Z—;, where py, = (41 X
1077)Hm™! = (4w x 10~7)NA~2 is the magnetic
permeability of the classical vacuum. The direction of f
this infinitesimal magnetic field is guided by the right- ‘ “

I|df| sin @

Point your right
thumb in the direction

of the current.**..,
y

I'hen curl your
. lingers to get

the field direction

hand cork-screw rule. This means that at the point P

(check Figure 2), the direction of the field is

perpendicular to this page and into the page. This is generally denoted by & in literature (check the
figure). Similarly, in figures where the field is perpendicularly coming out of the page, the usual

symbol is ©.
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To remember the direction of the magnetic field, use the mnemonic in the figure above. With all these
info at our disposal, we can now write the vectorial form of the equation:

5 Mo (IALXF\ _ o (1dD X7
Y AN G AWHEE

= Ho IdZ)XF
=>B=— —_—
41 ( |7]3
Cc

— This is the total field generated due to the whole conductor. Some important points:

e When6 =0°dB =0,ie., the intensity of the magnetic field at all points on the axis of the
current element is zero.

e When6 = 90°, dB is maximum, i.e., the intensity of the magnetic field at all points lying
perpendicular to the axis of the current element is maximum.

o The intensity mentioned above is called the magnetic induction vector or the magnetic flux
density.

3.2 Applications of Biot-Savart Law:

a. Magnetic field intensity at a point due to a straight conductor:

X % Following the adjacent figure, XY is a straight conductor, through
2 which electric current I is passing from X to Y. The job is to find

out the magnetic field due to this wire at a point P. Just like in the
previous section, direction of magnetic field at P would be into
the page, i.e., ®. Let us say that the point at which the normal
from P XY cuts the conductor is named 0. OP = r. Imagine an
infinitesimal part dl (MN) of the conductor at a distance [
from 0. Magnetic field at the point P due to the current element
Idl is,

Uo Idlsin 6

dB =
4 r'?

Now,

r =r'sin(¢P(dl)0) =r'sin(mr — 6) =r'sind
=71’ = rcsch

Also,

r = ltan(¢«P(dl)0) = ltan(mr — ) = —ltanf

=l=—-rcotd =dl=rcsc’0 do

Uo Idlsin®  py I(rcsc?20dB)sin® gl
o B = — = —_— = —_—
d 4w r'? 41 r2csc2 6 4o 6 df
Hence, for the whole conductor XY, the field at P is,
7'[_92
_ Mol . Mol -6, Mol
B = de = 47'”"9-[ sinf d6 = 47'[r[ cosl9]61 = 47_[r(cosl91 + cos6,)
1

Special Cases:

A. When the conductor is infinitely long, it spreads both directions in such a way that 8, = 6, =
0°. In that case, intensity of the magnetic field at P,
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Ho to I
B = 22— (cos0° + cos 0°) = ——
yy (cos cos0°) = T

B. When the conductor is finite at one end and infinitely long at the other, i.e., semi-infinite, then

6, = 90°and 6, = 0°. In that case, intensity of the magnetic field at P,

ol
B=—- 90° + 0°) = —-
47T (cos cos0°) = 47”

Numerical Examples:

X.  Find the value and direction of the Lorentz force acting on a particle with charge 3.2 x
10719C, moving at a velocity (37 — 4j)ms ™~ through a magnetic field B = (2 + 3j) T.
Answer:

The Lorentz force on the charged particle

=3 — i j E ~
F=q(#xB)=q|3 -4 0[=32x10""x(9+8)kN =544x10"18N
2 3 0

in the z direction.

XI. A conductor is bent in such a way that it makes a square frame of radius a. If a current i
passes through the frame, what would be the intensity of the magnetic field at the center
of the frame?

Answer: Q¢ i R

Following the figure, PQRS is the square frame with the center "_'/;.
at 0. From the symmetry of the frame, the magnetic field at the
center would be 4 times that generated by any side of the .4

square. Let us isolate a side PQ. The field B, at 0 dueto PQis [ . '.5&,0
easy to calculate
Ko Ko 45 7
B, = - (cos 6, + cosb,) = —7 (cos45° + cos 45°) S
Uo 2V2i Lo - S
=— Tesla
4n
b. Magnetic field intensity at a point on the axis of a circular current carrying coil:
4l g ; In the adjacent Figure 3, the circular
: Figure 44 conducting coil (with one loop) centered
dBcosh at O is carrying a steady current of i
: dB Amperes. A 3-D point of view, for ease

of understanding is in Figure 4. The job is
dBsinh o calculate the magnetic field B at a

PR >
= >

—*\ JBsin0, point P on the axis of the loop at a
....... y : distance x from 0. Consider an
et ‘' \dB infinitesimal length dI of the loop at
' dﬂx'(!s(l R point E, with the corresponding current

...... element idl. The displacement vector EP
: is 7. The direction of the magnetic field at

P isalong ﬁj perpendicular to the plane
containing both idl and 7. Combining all these, the magnetic field at P due to idl is

F
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v

o idl x # i
dB = 4n 3 Figure 45

https.//www.miniphysics.com/uy1-

= idlrsin90° idl
:>|dB|=#0 _:uO

4t 13 " 4nr?
" 4m (a? + x?)

Now, the components along the axis and
perpendicular to the axis of the loop are, =
respectively, dB sin 8 and dB cos 8.

We can consider a similar current element of the
loop idl ata point F exactly on the opposite side of it. Following the derivation above, the component
of the magnetic field due to this element at P, perpendicular to the axis of the loop is - dB cos 8,
exactly same and opposite to that due to the element at E. These two cancel each other out. Following
the circular symmetry of the loop, we can see that for every current element on it, there is an equal
and opposite element too, whose perpendicular components cancel each other, i.e., [ dB cos6 = 0.
Thus the only remaining component of the force is along the axis:

Figure 46
https://www.britannica.com/scienc
e/magnetism/Magnetic-field-of-
steady-currents

2ma . 2ma . 2ma

= = 2 2 - 2 2
J 4 (a? + x2) , 4m (a +x)\/az+x2 4n(a2+x2)2
ia
=M0—3 2na
Amt(a? + x2)2
] 2
o i a
(a2 + x2)2

We can clearly see how this unidirectional magnetic field can (very roughly) mimic a real magnet
with poles on both sides. Figure 5 tries to show this pictorially. Case ‘C’ below shows this in a
mathematical way.

Special Cases:

A. We can imagine the coil to be comprised of n loops. Then the intensity increases to simply
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o ugi  a?

B=n———51%
(a? + x?)2
B. The field is maximum (%) atx =0, i.e., at the B
; A
center of the loop and symmetrically decreases on Sl B
both sides of the loop with increasing x. The B R
figure on the right plots the change of B with x. M
Home Work: Calculate the double derivative of B / :
w.r.t. x. At which point is it zero? / '
C. One fringe case is quite interesting. When P is at a / : \
: ; L :
large distance from the center of the loop, i.e., e i 0 ~_
x»a RIS TS TR A i =X
B poia®  poi(ma®)x  po iA
T2 T % 2mas
where A = ma?% is the area vector of the loop. Hence, M = iA is the dipole moment of the
current-carrying loop. That means B= 5—7‘;% which is the exact form of a bar magnet. Thus,

at a distance, a circular loop just mimics a bar magnet.

c. Magnetic field intensity at a point on the axis of a current carrying solenoid:

41 = \ v
\ - »
0000000
S —
> — -
- !

Figure 47 Solenoid (https://www.miniphysics.com/ss-magnetic-field-due-to-current-in-a-solenoid.html )

o dx A solenoid whose length is much larger than its
X mn’;?};‘;lmmmooom Y radius is called a long solenoid. Adjacent
. 0.3 figures show the cross-section of the solenoid.
§ .. i i ’ 2 Let’s say that the radius of the solenoid= a,
as 0,{ ‘x"' P current through it is I, turn density (no. of loops
Ao oA ’9 ] B AR e per unit length)= n. To determine the magnetic
'O.i——o I field intensity of the solenoid at a point P on its
X Figure 48 axis, we consider a small length dx (MN) of

§ the solenoid. The center of this length element
oowmméuuéooumom 0 ?s ata dista.ncte x f:rorr_1 the point P (alpng the
axis). As dx is infinitesimally small, it is
equivalent to a thin circular loop, two ends of which (M and N) are at angles 6 and 6 + d6 with the
axis at P, respectively.

Number of turns within MN = ndx. MP = r =+ a? + x2. Also, from Figure 7, NR = r d6 and

NR .
— =siné6.
MN

rdo

o~ NR =MNsinf = dxsin@ = rdf = dxsinf = dx = Sno

a -
also, —=siné
r
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Hence, the magnetic field intensity at P due to dx length of the solenoid,

[2r(ndx) a I /2mny a\2 T I 1 nl
P # “L(—>(_) 46 =% (2nn) sin? 6 —— df = "2 sin6 do
4T . 5, | o\ 4w r/ sin@ 4m sin 6 2
(a? + x )2
0,
pond . ponl 0, _ Honl
=B = > fsdeHz 3 [—cos@]ejz > — cos6,)
01
Discussions:

A. From Figure 7 we can see that if the solenoid is very long and P is far from both ends of it,
then 8; = 0° and 6, ~ 180°. In that case, the magnetic field intensity becomes

— c0s180°) = pynl

B. If Pisonthe leftend of the (very Iong) solenoid, then 8; = 90° and 6, ~ 180°. Then the
magnetic field is B = (cos 90° — cos 180°) = ”"nl

C. Similarly, for the right end, 6, = 0°and 6, = 90°, and the field, B = “"2"1 (cos0° —

c0s 90°) = ”Onl

Thus, the field intensity at two ends of a solenoid is same and is half of that inside the solenoid.

Numerical Examples:

I.  Acircular coil of radius 10 cm has 100 turns in it. What is the intensity of the magnetic
field at its center if the current through the coil is 5 A?

Answer:
As x = 0, magnetic field-intensity at the center of the coil,
Monl
" 2a

Heren =100,a =10cm =0.1m,I =5A,and u = 4m X 107’ Hm™1.
B 47r><10‘7><100><5T 103 T
= = X
2% 0.1 &

1. Asolenoid is made by wrapping densely-packed thin wire around a non-conducting
cylinder. The length of the solenoid is twice its radius. What is the magnetic field at its
center if current passing through the coil is I?

Answer:
L L

1
As L = 2a, followmg the adjacent figure, cos 6, = T \F ,and cos(w — 6,) = \Fa =5
cosf, = — J_E' If the total number of turns in the solenoid is N, then the magnetic field at the
center,

N
b (7)1 uoNI

B =

cosf, —cos0O,) =
( 1 2) ‘\/EL

I, What is the magnetic field intensity at the center of a semi-circular wire-frame of length L
and carrying current I?

Answer:
If the radius of the semi-circle is r, then L = nmr = r = L/m. Hence the field intensity at the
center

1 yOI ,uonl

2 2r 4L
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