- (iii) 27°C উষ্ণতায় অক্সিজেন গ্যাসের অণুগুলির সেই ভগ্নাংশ নির্ণয় কর যাদের বেগ 100 m/s থেকে 110 m/s - এর মধ্যবর্তী।
- (খ) (i) ম্যাক্সওয়েলের তাপগতিবিদ্যার সম্পর্ক থেকে ক্লাসিয়াস-ক্লেপেরন সমীকরণটি প্রতিষ্ঠা কর।
 - (ii) একটি $2 \times 10^{-5} {
 m cm}^2$ ক্ষেত্রফল সম্পন্ন কৃষ্ণবস্তু $1000 {
 m \ k}$ উষ্ণতায় কতটা তাপশক্তি প্রতি সেকেন্ডে বিকিরণ করবে তা বাহির কর। কত উষ্ণতায় কৃষ্ণবস্তুটি দ্বিগুণ তাপশক্তি বিকিরণ করবে? দেওয়া আছে, $\sigma = 5.67 \times 10^{-5}$ সিজিএস একক।
 - (iii) M-B পরিসংখ্যা মেনে চলে এরূপ একটি আর্দশগ্যাসে T উষ্ণতায় N সংখ্যক অণু আছে। গ্যাসের অভ্যন্তরীণ শক্তি এবং স্থির আয়তনে আপেক্ষিক তাপ নির্ণয় কর।

2nd Semester

PHYSICS

PAPER—GE2T

(Generic Elective)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any five questions. 5×2

2

- (a) State third law of thermodynamics.
- (b) Show that entropy remains constant in a reversible 2 process.
- (c) Define Joule-Thomson coefficient. Write down expression for inversion temperature for Vander Walls gas.

- (d) If the degrees of freedom of a molecule of a gas is n, show that the ratio of its two specific heats is given by $\gamma = c_p/c_v = 1 + 2/n$.
- (e) Which distribution law obeys a photon and a molecule of an ideal gas. 2
- Explain how viscosity of a gas depends on its temperature.
- (g) Find the dimension of Stefan Constant (σ).
- (h) Distinguish between microstate and macrostate of a system.

Group-B

2. Answer any four questions.

- 4×5
- (a) (i) What do you mean by enthalpy?
 - (ii) Show that $TdS = CvdT + T\left(\frac{\partial P}{\partial T}\right)$ dv 2+3
- (b) Derive the Wien's law, Rayleigh-Jean's law and Stefan-Boltzmann's law from Planck's law for black-5 body radiation.

- (i) Write down the importance of the laws of thermodynamics.
 - (ii) Show that the work done by a perfect gas change 18 undergoing adiabatic 2+3 $(P_1V_1 - P_2V_2)/(\gamma - 1)$.
- (d) (i) A Carnot's engine working between 17°C and 147°C is supplied with 20,000 calorie of heat. How many joules of work will the engine be able to do?
 - (ii) What is statistical equilibrium? 3+2
- (e) Describe different steps of Carnot's heat engine. Derive expression for its efficiency. 2+3
- prove that equations T-dS Using

 $C_p - C_v = T \left(\frac{\partial V}{\partial T} \right)_p \left(\frac{\partial P}{\partial T} \right)_V$, Symbols have their usual

meaning. Hence for ideal gas (1-mole), Prove that Cp $-C_{v} = R.$

(g) From kinetic theory gas prove that the coefficient of viscosity of a gas is $\eta = \frac{1}{3} mn\bar{c}\lambda$, the symbols have

their usual meaning.

(h) Write down expressions for Bose-Einstein and Fermi-Dirac distribution functions.

Group-C

Answer any one question.

1×10

- 3. (a) (i) Show that Maxwell's speed distribution law will be independent of temperature if most Probable speed is taken as measuring speed.
 - (ii) Using Maxwell's speed distribution law, derive expression for average speed of gas molecules.
 - (iii) Find the fraction of oxygen molecules whose speed lies between 100 m/s and 110 m/s at 27°C.
 - (b) (i) Derive Clausius-Clapeyron equation from Maxwell's Thermodynamic relation.
 - (ii) A certain black body with a surface area of $2\times10^{-5} \, \text{cm}^2$ has a constant temperature of 1000 k. What is the total power radiated by the blackbody? Given $\sigma = 5.67\times10^{-5}$ CGS unit.

(iii) An ideal gas has N no. of molecule at T temperature and obey by M-B statistics.

Determine the internal energy and the specific heat at constant volume of the gas. 4+3+3

বঙ্গানুবাদ

पक्षिण প্रास्त्रस् भः भागाः निर्देशका निर्देशका

পরীক্ষার্থীদের যথাসম্ভব নিজের ভাষায় উত্তর দেওয়া প্রয়োজন।

বিভাগ-ক

হৈ কোন পাঁচটি প্রশ্নের উত্তর দাও।

 ক) তাপগতিবিদ্যার তৃতীয় সূত্রটি বিবৃত কর।
 ক) দেখাও যে, প্রত্যাবর্তন প্রক্রিয়ায় এনট্রপি স্থির থাকে।
 ক) জুল-উমসন গুণাঙ্কের সংজ্ঞা লেখ। ভ্যানডার ওয়াল গ্যাসের উৎক্রম তাপমাত্রার রাশিমালা লেখ।

 (ঘ) কোনো গ্যাসের অণুর স্বাধীনতার মাত্রা n হলে, দেখাও যে তার দুটি আপেক্ষিক তাপের অনুপাত γ = C_p/C_v = 1 + 2/n.
 ক) একটি ফোটন ও একটি আদর্শ গ্যাসের একটি অণু কোন্ কোন্ বণ্টন

भूव (यत्न हत्न ?

C/18/B.Sc./2nd Sem/PHSE/GE2T

- (চ) কোন গ্যাসের সান্দ্রতাঙ্ক তাপমাত্রার ওপর কিভাবে নির্ভরশীল তা ব্যাখ্যা
- (ছ) স্টিফান-ধ্রুবকের মাত্রা নির্ণয় কর।
- একটি তন্ত্রের মাইক্রোস্টেট ও ম্যাক্রোস্টেটের মধ্যে পার্থক্য লেখ।

বিভাগ-খ

২। যে কোনো *চারটি* প্রশ্নের উত্তর দাও:

8XC

- (ক) (i) এন্থ্যালপি বলতে তুমি কি বোঝ ?
 - (ii) দেখাও যে, $Td \sim = CvdT + T\left(\frac{\partial P}{\partial T}\right)$... dv. 2+0
- (খ) কৃষ্ণবস্তু বিকিরণের ক্ষেত্রে ভীনের সূত্র, র্যালে-জীনস্-এর সূত্র এবং স্টীফ্যান্-বোনজ্ম্যীনের সূত্র প্ল্যাংঙ্কের সূত্র থেকে প্রতিষ্ঠা কর।
- (গ) (i) তাপগতিবিদ্যার সূত্রগুলির গুরুত্ব লেখ।
 - (ii) কোন আর্দশ গ্যাসের রূদ্ধতাপ পরিবর্তন সংঘটিত হলে প্রমাণ কর যে, কৃতকার্য হয় $(P_1V_1 - P_2V_2)/(\gamma - 1)$.
- (ঘ) (i) 17°C এবং 147°C উচ্চতাদ্বয়ের মধ্যে কার্যরত একটি কার্নো ইঞ্জিনে 20,000 ক্যালোরি তাপ সরবরাহ করা হল। ইঞ্জিনটি কত জুল উপযোগী কার্য করতে সক্ষম হবে?

(ii) পারিসাংখ্যিক স্থিতাবস্থা কি ?

5+0

C/18/B.Sc./2nd Sem/PHSE/GE2T (Continued)

- ে (৬) একটি কার্নো বিভিন্ন ধাপগুলি বর্ণনা কর। এর দক্ষতার রাশিমালা নির্ণয়
 - (চ) T-ds সমীকরণগুলি ব্যবহার $C_p - C_v = T \left(rac{\partial V}{\partial T} \right)_p \left(rac{\partial P}{\partial T} \right)_V$ চিহ্নগুলি প্রচলিত অর্থবহ। এ থেকে একমোল আর্দশ গ্যাসের ক্ষেত্রে প্রমাণ কর $C_p - C_V = R$. 8+5
 - (ছ) গ্যাসের গ্যাসীয়তত্ত্ব থেকে প্রমাণ কর যে গ্যাসের সান্দ্রতাঙ্কের রাশিমালা $\eta = \frac{1}{3} \text{mnc}\lambda$, চিহ্নগুলি প্রচলিত অর্থবহ।
 - (জ) বোস-আইনস্টাইন এবং ফেরমি-ডিরাকের বণ্টন সূত্র দুটি লেখ। ৫

বিভাগ--গ

৩। যে কোনো *একটি* প্রশ্নের উত্তর দাও।

5x50

- (ক) (i) দেখাও যে, ম্যাক্সওয়েলের বেগ বন্টনের সূত্রটি তাপমাত্রা নিরপেক্ষ হবে যদি অধিকতর সম্ভাব্য বেগকে—বেগ পরিমাপের একক হিসেবে ধরা হয়।
 - (ii) ম্যাক্সওয়েলের গতিণ্টন সূত্রটি প্রয়োগ করে গ্যাসের অণগুলির গড়বেগের রাশিমালা প্রতিষ্ঠা কর।

C/18/B.Sc./2nd Sem/PHSE/GE2T (Turn Over)