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Point Defects 
 
Defects exists any all solid materials. For ease of their characterization, defects are classified 
on the basis of their geometry, which is realistic as defects are disrupted region in a volume 
of a solid. Defects are:  
a.  Point defects (zero-dimensional)  
b.  Line defects (single dimensional)  
c.  Surface defects (two dimensional)  
d.  Volume defects (three dimensional) 

Point defects, as the name implies, are imperfect point-like regions in the crystal. Typical 
size of a point defect is about 1-2 atomic diameters. The simplest examples of lattice 
disorder are vacant lattice sites, interstitial atoms and substitutional atoms. Different point 
defects are explained in the following paragraphs: 
 
A vacancy is a vacant lattice position from where the atom is missing. It is usually created 
when the solid is formed by cooling the liquid. There are other ways of making a vacancy, 
but they also occur naturally as a result of thermal excitation, and these are 
thermodynamically stable at temperatures greater than zero. At equilibrium, the fraction of 
lattice sites that are vacant at a given temperature (T) are:  

Q kTn N e−=  
where  n is the number of vacant sites in  N lattice positions,  k is Boltzmann’s constant, T is 
absolute temperature in Kelvins, and Q is the energy required to move an atom from the 
interior of a crystal to its surface. It is clear from the equation that there is an exponential 
increase in number of vacancies with temperature. When the density of vacancies becomes 
relatively large, there is a possibility for them to cluster together and form voids. 
 
An interstitial atom or interstitialcy is an atom that occupies a place outside the normal 
lattice position. It may be the same type of atom as the rest surrounding it (self-interstitial) 
or a foreign impurity atom. Interstitialcy is most probable if the atomic packing factor is 
low.  
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Another way an impurity atom can be fitted into a crystal lattice is by substitution. A 
substitutional atom is a foreign atom occupying original lattice position by displacing the 
parent atom. 
 
In the case of vacancies and foreign atoms (both interstitial and substitutional), there is a 
change in the coordination of atoms around the defect. This means that the forces are not 
balanced in the same way as for other atoms in the solid, which results in lattice distortion 
around the defect. 
 
Vacancies 
 
There are two types of vacancies. In one type the displaced atom migrates in successive 
steps and eventually settles at the surface: this is a Schottky defect. A Schottky defect is 
created in a perfect crystal by transferring an atom from a lattice site in the interior to a 
lattice site on the surface of the crystal. In the second type, called a Frenkel defect, in which 
an atom is transferred from a lattice site to an interstitial position, a position not normally 
occupied by an atom. So the Frenkel defect includes both atom and vacancy. Because of the 
additional elastic energy involved in squeezing an atom into an interstitial position, the 
Frenkel defect requires a large amount of energy and, for this reason, is not usually present 
in metals except under special circumstances. 
 
Thermal entropy and Configurational entropy 
 
Here, it is necessary to define the terms, ‘thermal’ ( )thS  and ‘configurational’ ( )cfS  (or 

mixing) entropies. 
The thermal entropy ( )thS  is determined by the number of different ways  thW  in which the total 

vibrational energy of the crystal may be distributed over the possible vibrational modes. 
According to Boltzmann relation, logth thS k W=               (1) 

For example, in the Einstein model of a solid, thW  stands for the number of different ways in 
which the energy of vibration with total number of vibrational quanta n may be distributed over 
the 3N harmonic oscillators representing the solid consisting of N atoms. Obviously,     

( )3 !
3 ! !th

N n
W

N n
+

=           (2) 

From Eqs. (1) and (2) we get, 
( )3 !

log
3 ! !th

N n
S k

N n
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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( ) ( ) ( )(3 ) log 3 3 3 log 3 3 logk N n N n N n N N N n n n= + + − + − + − +⎡ ⎤⎣ ⎦  using Stirling 

approximation. 
3 3 33 log log 3 log 1 log 1

3 3th
N n N n n NS k N n k N n

N n N n
⎡ + + ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇒ = + = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

For ,h kTν  according to Einstein model 3 3 1 3 1.NkT nh N n h kT n Nν ν= ⇒ = ⇒  

33 log
3th
n NS k N n
N n

⎡ ⎤⎛ ⎞ ⎛ ⎞⇒ = +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 since 3 3log 1 N N

n n
⎛ ⎞+ ≈⎜ ⎟
⎝ ⎠

 as 3 1.N n  

( )3 log 1 3 1 log
3th
nS Nk Nk kT h
N

ν⎡ ⎤⎛ ⎞∴ = + = +⎡ ⎤⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦
      (3) 

This is the expression of thermal entropy. 
 
The configurational entropy ( )cfS  of a crystal has nothing to do with the distribution of energy; 

it is determined solely by the number of different ways cfW  in which the atoms may be arranged 

over the available number of lattice sites.  
Consider for example a lattice containing Na atoms of type A and Nb atoms of type B -and 
assume that the lattice sites are all equivalent in the sense that a given lattice site may be 
occupied by A or B.   

( )!
! !

a b
cf

a b

N N
W

N N
+

∴ =           (4) 

Here, cfW represents the number of different arrangements of Na   A atoms and Nb B atoms 

over a total ( )a bN N+  lattice points. The configurational entropy associated with cfW is again 

given by the Boltzmann relation: ( )!log
! !

a b
cf

a b

N N
S k

N N
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

     (5) 

For a perfect crystal containing identical atoms and in the absence of any lattice defects, 
1cfW =  and 0cfS =  because there is only one possible arrangement of the atoms. The total 

entropy occurring in the usual thermodynamic formulas is equal to the sum of the thermal and 
configurational entropies, i.e., th cfS S S= +        (6) 

 
Are lattice defects thermodynamically favourable? 
 
In thermal equilibrium a certain number of lattice vacancies are always present in an 
otherwise perfect crystal, because the entropy is increased by the presence of disorder in the 
structure. 
 
According to thermodynamics, the equilibrium of a solid (under low external pressure) at 
a temperature T is determined by the minimum value of the free energy F = E - TS .  The 
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defects under consideration are present as a result of the thermodynamic equilibrium 
conditions. Suppose, in a perfect metallic crystal we produce a certain number of vacant lattice 
sites by transferring atoms from the interior of the crystal to the surface.  This will require a 

certain amount of energy, i.e., E increases. Consequently F 
increases and this by itself is thus unfavourable in the 
thermodynamic sense. On the other hand, the creation of the 
vacancies increases the disorder in the crystal and thus increases 
the configurational entropy from zero to a certain value 
determined by the number of vacancies n produced. In fact, the 
configurational entropy associated with the possible arrangements 
of N atoms and n vacancies over a total ( )N n+  lattice sites is 

( )!log .
! !cf

N n
S k

N n
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 Now,  because  the  entropy  enters  in  the free  energy  expression  in  

the  form-TS, an increase in entropy reduces F and is thus favorable thermo- dynamically. As a 
result of the above described competition between energy on the one hand and entropy on the 
other, the stable configuration is one in which a certain fraction of the lattice sites is 
unoccupied. It has been assumed for simplicity that the thermal entropy is independent of n/N. 
The equilibrium corresponds to the minimum value of F at the temperature T. Any further 
increase in the disorder of the lattice would require energy larger than the associated 
reduction due to the increase in entropy. 
 
Concentration of Schottky defects as a Function of temperature 
 
Let us consider a perfect lattice containing N similar atoms at a temperature T; the free energy 
of this (unstable) perfect crystal will be denoted by Fper(T). Suppose we create n vacant 
lattice sites; let the energy required to create one vacancy be .vϕ  We shall assume that vϕ  is 
independent of n, which is justified as long as n << N; also, we assume that no two 
vacancies are nearest neighbors of each other. The energy of the imperfect crystal is then 
increased by vnϕ  relative to that of the perfect crystal.   
The free energy of the imperfect crystal can be written as 
( ) ( ), per v th cfF n T F T n nT S TSϕ= + − Δ −        (7) 

Here, thSΔ  is the increase in thermal entropy per vacancy and cfS is the configurational entropy 

for an imperfect crystal as in Eq. (5). So the Eq. (7) can be rewritten as 

( ) ( ) ( )!, log
! !per v th

n N
F n T F T n nT S kT

n N
ϕ

+⎡ ⎤
= + − Δ − ⎢ ⎥

⎣ ⎦
 

Using Stirling approximation,      
( ) ( ) ( ) ( ), log log log logper v thF n T F T n nT S kT n N n N N N n nϕ⇒ − = − Δ − + + − −⎡ ⎤⎣ ⎦  (8) 
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In thermal equilibrium, 0.
T

F
n

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
 

( )log log 0v th
T

F T S kT n N n
n

ϕ∂⎛ ⎞ = − Δ − + − =⎡ ⎤⎜ ⎟ ⎣ ⎦∂⎝ ⎠
      (9) 

( )log v thn N T S
n kT

ϕ+⎡ ⎤ − Δ
⇒ =⎢ ⎥

⎣ ⎦
 

v th v thT S S
kT kT kn N ne e e

n n N

ϕ ϕ− Δ Δ
−+⎛ ⎞⇒ = ⇒ =⎜ ⎟ +⎝ ⎠

       (10) 

Since at equilibrium, the number of vacancies is quite small ( ) ,n N  we get the equilibrium 

concentration of Schottky defect in a solid at temperature T: 
v thS

kT kn e e
N

ϕ Δ
−

=    (11) 

 
Physical meaning of thermal entropy change per vacancy 
 
In order to get an insight into the physical meaning of the thermal entropy change thSΔ  per 
vacancy, we shall consider a simple Einstein model of a solid. The thermal entropy of the 
perfect crystal is then equivalent to the thermal entropy of a system of 3N harmonic 
oscillators with the Einstein frequency v for .h kTν  In the imperfect crystal, the atoms 
neighboring a vacancy will have a vibrational frequency v' (v' < v) because the restoring 
forces are reduced, particularly along the direction of the line joining the atom and the vacancy. 
When x is the number of nearest neighbours surrounding a vacancy (x = 6 for sc, =8 for bcc, 
= 12 for fcc), the Einstein model leads to 3nx oscillators of frequency v' and (3N - 3nx) 
oscillators of frequency v. 
 
In analogy with Eq. (3), the thermal entropy of the actual (imperfect) crystal is 

( ) ( ) ( )( ) 3 1 log 3 3 1 logth acS nxk kT h N nx k kT hν ν′= + + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     (12) 

Subtracting Eq.(12) from Eq. (3), we get 

( ) ( )( ) ( ) 3 log 3 logth ac th perS S nxk kT h nxk kT hν ν′− = −  

( ) ( ) ( )( ) ( ) 3 log 3 logth ac th per thS S n xk S xkν ν ν ν′ ′− = ⇒ Δ =      (13) 

So change in thermal entropy per vacancy is a consequence of the change in the frequency 
spectrum of the lattice vibrations. 
From Eq. (11) & (13), we obtain the equilibrium concentration of Schottky defect in a solid at 

temperature T as    ( ) ( )
3 3log .

v vx xkT kTn e e e
N

ϕ ϕ
ν ν ν ν

− −′ ′= =    (14) 
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Temperature dependence of vϕ  
It is evident that as T increases, the lattice expands, the binding forces are reduced, and 
thus vϕ  decreases with temperature. In first approximation one may write a linear 

relationship between vϕ  and T, i.e., ( )0 1 .v v Tϕ ϕ α= −          (15) 

where 0α  is a temperature coefficient and 0vϕ  the energy of formation of a vacancy at T = 0. 

The Eq. (11) becomes, 
( )( )0 0 01v th v v thT S S
kT k kT k kn e e e e e

N

ϕ α ϕ αϕ− Δ Δ
− −

= =      (16) 

Number of Frenkel defects as a Function of temperature 
 
In case of Frenkel defects we consider n vacant lattice sites; let the energy required to create 
one vacancy be .Fϕ  The configurational entropy ( )cfS

 
is

 
logcf cfS k W=

 
where 

( ) ( )! !
! ! ! !

i
cf

i

n N n N
W

n N n N
+ +

= ⋅ . N is the number of atoms, Ni is the number of possible interstitial 

positions. 
So the Eq. (7) can be rewritten as in case of Frenkel defects, 

( ) ( ) ( ) ( )! !
, log

! ! ! !
i

per F th
i

n N n N
F n T F T n nT S kT

n N n N
ϕ

+ +⎡ ⎤
= + − Δ − ⎢ ⎥

⎣ ⎦
    (17) 

where, thSΔ  is the change in thermal entropy per Frenkel defect. 

In thermal equilibrium we can write 0.
T

F
n

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
  

Using Stirling approximation we finally obtain, 
( ) ( )log log 0i

F th
T

n N n NF T S kT
n n n

ϕ
+ +⎡ ⎤∂⎛ ⎞ = − Δ − + =⎢ ⎥⎜ ⎟∂⎝ ⎠ ⎣ ⎦

 

( )( )
2log 0i

F th

n N n N
T S kT

n
ϕ

+ +⎡ ⎤
⇒ − Δ − =⎢ ⎥

⎣ ⎦
 

Since at equilibrium, the number of vacancies is quite small ( ), ,in N N  

2log 0i
F th

NNT S kT
n

ϕ ⎡ ⎤⇒ − Δ − =⎢ ⎥⎣ ⎦
 

2
thF S

kT k
in NN e e

ϕ Δ
−

⇒ =            

2 2
thF S

kT k
in NN e e

ϕ Δ
−

∴ =            (18) 
This is the expression of the equilibrium concentration of Frenkel defect in a solid at temperature 
T. The factors 2 appear in the exponentials because a Frenkel defect has two components. 
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Schottky & Frenkel defects in Ionic Crystals 
 
In ionic crystals, existence of point defects is subjected to the condition of charge neutrality. 
There are two possibilities for point defects in ionic solids.  
 
- when an ion displaced from a regular position to an interstitial position creating a vacancy, the 
pair of vacancy-interstitial is called Frenkel defect. Cations are usually smaller and thus 
displaced easily than anions. Closed packed structures have fewer interstitials and displaced ions 
than vacancies because additional energy is required to force the atoms into the interstitial 
positions.  
 
- a pair of one cation and one anion can be missing from an ionic crystal, without violating the 
condition of charge neutrality when the valency of ions is equal. The pair of vacant sites, thus 
formed, is called Schottky defect. This type of point defect is dominant in alkali halides. These 
ion-pair vacancies, like single vacancies, facilitate atomic diffusion. 

 
An ionic crystal should contain equal numbers of positive and 
negative ion vacancies. Why? 
 
Let us consider an ionic crystal of the composition A+B-. Positive ion 
vacancies may then be produced in a similar way as in metals, viz., 
by a number of successive jumps of positive ions. The result would be 
equivalent to taking a positive ion somewhere from the interior of the 
crystal and placing it at the surface. Suppose now that a number of 
positive ion vacancies would have been produced in this manner while 
the negative ion lattice remained perfect. The surface of the crystal 
would then contain an excess of positive charge, the interior an 
excess of negative charge. Thus space charges would be set up. It is 
obvious that such space charges would counteract the formation of 
more positive ion vacancies. On the other hand, the field set up by 
the space charges would favor the formation of negative ion 
vacancies. We thus conclude that as a consequence of the tendency 
to prevent the build-up of space charges, an ionic crystal should 
contain nearly equal numbers of positive and negative ion vacancies. 

 
Equilibrium concentration of Schottky defects in Ionic Crystals 
 
Let us consider an ionic crystal made of positive and negative ion vacancies.  ϕ+  and ϕ−  are the 
energy required to produce a single positive and a single negative ion vacancy respectively. It is 
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obvious from this  that  their number  will  be  determined  only  by  the  sum  of  the  formation  
energies .ϕ ϕ ϕ+ −= +                     (19)  

The free energy of the fictitious perfect crystal can be written as .per per perF E TS= −  (20) 

The entropy is thermal entropy only, because for a perfect crystal the configurational entropy 
vanishes. Let the actual crystal contain n positive and n negative ion vacancies distributed over 

a total of ( )n N+ . Its configurational entropy is ( ) 2
!

log
! !cf

n N
S k

n N
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.    (21) 

The free energy of the actual crystal may thus be represented by  
( ) ( ) ( ),ac per ac per cfF n T F T n T S S TSϕ= + − − −

 
( ) ( ) ( ) ( )!, 2 log

! !ac per ac per

n N
F n T F T n T S S kT

n N
ϕ

+⎡ ⎤
⇒ = + − − − ⎢ ⎥

⎣ ⎦     
(22) 

where acS  is the thermal entropy of the actual crystal. The increase in thermal entropy is 

( )th ac perS S S nΔ = −  for production of a pair of vacancy.  

In thermal equilibrium we can write 0.
T

F
n

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
  

Using Stirling approximation we finally obtain, 2 2
thS

kT kn Ne e
ϕ Δ

−
=

     
(23) 

In the actual ionic crystal, the Einstein model leads to 6nx oscillators of frequency v' and (6N 
- 6nx) oscillators of frequency v, x is the number of nearest neighbours surrounding a 
vacancy. So the thermal entropies of perfect and actual crystals become respectively as: 

( )6 1 logperS Nk kT hν= +⎡ ⎤⎣ ⎦  

( ) ( )6 1 log 6 1 logac perS nxk kT h nxk kT h Sν ν′= + − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

( ) ( ) ( )6 log 2 3 logac per thS S n xk S xkν ν ν ν′ ′− = ⇒ Δ =      (24) 

From Eqs. (23) & (24) we can write, 2kTn NCe
ϕ

−
= where

 
( )3xC ν ν ′= . 

If  ϕ  depends on temperature in accordance with a relation, 

 ( ) 0 0
dT T T
dT
ϕϕ ϕ ϕ γ⎛ ⎞= + = −⎜ ⎟

⎝ ⎠
          (25) 

the actual expression for the density of vacancies should be  

( )3 2 2x k kTn N e e
γ ϕ

ν ν
−

′=          (26) 

 
Note: 
Here, an objection is raised that the temperature variation of the thermal entropy change thSΔ  is 

not taken into account . For zero pressure we have ( )thd dT T d S dTϕ = Δ . 
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Then n N  could be expressed as ( ) ( ) ( )exp log
1
dn N A kT k n N

d T
ε ε= − ⇒ = −  

( )
( )
( )

( )
( )

1
1 2 2 2 1 1

thth d S d TSdk
d T k kT d T d T

ϕϕε ε
⎡ ⎤ΔΔ⎡ ⎤⇒ = − − − ⇒ = − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

( )
( )
( )

( )
( )

1 1 1 2.
1 2 1 1

d ddk
d T T d T T d T

ϕ ϕ
ε ε ϕ ε ϕ

⎡ ⎤
⇒ = − ⇒ = − − − ⇒ =⎢ ⎥

⎣ ⎦
 One can measure ϕ  in this 

manner. 

Note: It will be evident that a positive and a negative ion vacancy will attract each 
other as a result of the Coulomb field between them. For large distances, the energy 
of attraction is equal to 2 ,e rε−  where ε  is the dielectric constant of the medium. 
They may therefore combine to form pairs of vacancies (Fig. 7-1). At a given 
temperature, there will exist a certain ratio between the number of single vacancies and the 
number of pairs, the ratio depending on the dissociation energy required to separate a pair 
into two singlets. There are evidently certain degrees of dissociation depending on 
whether the distance between the single vacancies is small or large; in a sense one may 
therefore speak of a thermally excited state of a pair if the distance between the vacancies 
is only a few atomic diameters. 
 
The activation energy for the formation of defects in ionic crystals 
 

We derive an expression for the number of vacancies in an ionic crystal in thermal 
equilibrium at a temperature T. This number is essentially determined by the formation energy 

.ϕ ϕ ϕ+ −= +  Let us consider the energy ϕ+  and ϕ−  involved in the formation of a positive ion 
vacancy and a negative ion vacancy respectively.  

Suppose a 
positive ion is 
removed from the 
interior of the 
crystal to infinity, 
while the charge 
distribution in the 
crystal is kept the 
same as it was. 
The responsible 
energy is given by 

2

0

11L
eA
a n
⎛ ⎞∈ = −⎜ ⎟
⎝ ⎠

 

 ……. (27) 
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where N is the number of ion pairs, A is the Madelung constant, a0 is the shortest interionic 
distance, n is the Born repulsion exponent. For NaCl this is equal to about 7.9 eV per ion 
pair. 
Putting the ion from infinity on the surface of the crystal leads to a gain in energy of 

2

0

1 11
2 2L

eA
a n
⎛ ⎞∈ = −⎜ ⎟
⎝ ⎠

     (28) 

We note that from the point of view of the surroundings of a positive ion vacancy, it looks as if 
an excess of negative charge has been added in the vicinity of the missing positive ion. 
Consequently the surrounding material will become polarized. This polarization  consists first of 
the formation of dipoles induced in the ions by the Coulomb field of the missing ion, second  
of a slight ionic displacement as indicated in Fig. 7-2. Because of the long range of Coulomb 
forces, it is not sufficient to take into account only nearest neighbors; the effect will spread 
over distances many times the lattice constant. The calculation of this polarization energy may 
be understood in principle on the basis of a simplified model, first introduced by Jost. If we 
consider the vacancy as a spherical hole inside a homogeneous dielectric constant ε  the hole 
bearing a charge e at its center, we obtain the situation given in Fig. 7-3. The charge e, due to 
the missing ion, polarizes the dielectric and thus in turn will create a reaction potential V at 

the location of the charge.  Thus the polarization energy is given by 
21 11

2 2
eP eV A
R ε+
+

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

 

            (29) 

The Eqs. (27) - (29) gives the value of 
2 2

0

1 1 11 1
2 2 2L L

e eP A A
a n R

ϕ
ε+ +

+

⎛ ⎞ ⎛ ⎞=∈ − ∈ − = − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (30) 

For negative ion vacancies 
2 2

0

1 1 11 1
2 2 2L L

e eP A A
a n R

ϕ
ε− −

−

⎛ ⎞ ⎛ ⎞=∈ − ∈ − = − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (31) 

The energy required to produce a positive and a negative ion vacancy is 
2 2

0

1 1 1 11 1
2 L

e eA A P P
a n R R

ϕ ϕ ϕ
ε+ − + −

+ −

⎛ ⎞⎛ ⎞ ⎛ ⎞= + = − − + − =∈ − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

    (32) 

 
Self-diffusion in Alkali halide crystals 
 
The self-diffusion of radioactive sodium in NaCl and NaBr is studied in the following 
manner: A thin layer of radioactive salt containing the isotope Na23 was deposited on one face 
of a cubic crystal. The crystal was then held at a constant temperature for a certain length of 
d time. After this diffusion anneal, the distribution of radioactive sodium was determined by 
means of a sectioning technique, employing a microtome. 
 
Diffusion is the movement of particles in a solid from an area of high concentration to an area of 
low concentration, resulting in the uniform distribution of the substance. Self-diffusion stands for 
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that process in same material. Let us consider diffusion of radioactive Na atoms in solid state 
solution (NaCl / NaBr) in direction x between two parallel atomic planes (separated by ∆x).  
  
If there is no change with time in concentration at radioactive atoms at these planes – such 
diffusion condition is called steady-state diffusion. According to the Fick’s First Law of 
Diffusion, the transfer of radioactive atoms per unit area in a one-dimensional flow can be 

described by the following equation: ( )* ,
.

n x t
J D

x
∂

= −
∂  

where J is the number of radioactive 

atoms crossing unit area in unit time, *n  is the concentration of the radioactive atoms, D is the 
diffusion coefficient, x is the distance into the substrate, and t is the diffusion time. The negative 
sign indicates that the diffusing mass flows in the direction of decreasing concentration. From 

the Conservation of Mass, we also know that: ( ) ( )* *, ,
0 .

n x t n x tJ J
t x t x

∂ ∂∂ ∂
+ = ⇒ = −

∂ ∂ ∂ ∂
 

If we combine this relationship with the Fick’s 1st Law of Diffusion, then we have derived the 

Fick’s 2nd Law of Diffusion, which states: ( ) ( )* 2 *

2

, ,
.

n x t n x t
D

t x
∂ ∂

=
∂ ∂   

The solution of this equation for the boundary conditions (at t = 0, *
0n   vanishes everywhere 

except at x = 0 where it become infinite) is obtained as ( )
( )

* 2
* 0

1 2, exp .
4

n xn x t
DtDtπ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 

Here ( )* ,n x t   is the density of radioactive ions at x after an annealing period t; *
0n  is the initial 

density at the surface. This solution is based on the assumption that the migration of radioactive 
sodium is a result of a single diffusion process, because only one diffusion constant D has been 
introduced. 

Derivation of diffusion coefficient in Alkali halide crystals 

In alkali halide crystals diffusion is therefore possible only by the migration of interstitial ions or 
by the migration of vacant lattice sites. The positive ions surrounding a positive ion vacancy may 
jump into the vacancy; consequently, the vacancy moves through the crystal by virtue of positive 
ions jumping into it and diffusion becomes possible. 
 
Let us consider a sodium chloride structure, assuming for simplicity that the x-axis along which 
the diffusion of radioactive sodium takes place coincides with one of the cube edges. A particular 
positive ion vacancy, such as the one in Figure indicated by the square may then in time carry 
out a jump to any of 12 equivalent positions, assuming the latter are occupied by positive ions. 
Of these possible jumps, there are 4 in the positive x-direction, 4 in the negative x-direction, and 
the remaining 4 leave the vacancy in the original plane. Thus if p is the probability per second 
for the vacancy to make any jump, p/3 is the probability per second for a displacement +a, -a, 
and 0, respectively, if a is the shortest interionic distance. Let us represent the number of 
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radioactive positive ions crossing 1 cm2 of the plane C in Figure per second, going from plane A 
to B, by *N→ . Similarly, let *N←  represents the same number crossing plane C by going from 
plane B to A. Then if N is the density of positive ions per cm3, n is the density of vacancies, and 
n* is the density of radioactive positive ions, 

*
*

2

1
2 3

n p nN
a N N→ = ⋅ ⋅ ⋅

 

*
* *

2

1 1
2 3

n p nN n a
a N N x←

⎛ ⎞∂
= ⋅ ⋅ ⋅ +⎜ ⎟∂⎝ ⎠

 

Here  2

1
2a

 represents the total number of positive lattice sites 

per cm2 on plane A or B [In area 2a  total number of positive 
ions = 2 X (1/4) = 1/2]; n/N represents the probability that 
such a site is vacant, and n* /N represents the probability 
that a positive ion in plane A is radioactive. Consequently the net number of radioactive 
positive ions passing 1 cm2 of plane C per second from left to right is 

*
* *

2

1
6

np dnJ N N
a N dx→ ←= − = − ⋅ ⋅         (33) 

Comparing (33) with the relation 
*dnJ D

dx
= −  and remembering that 3

1
2

N
a

=  [In 

volume 3a  total number of positive ions = 4 X (1/8) = 1/2 ] one obtains for the diffusion 
constant associated with the migration of single positive ion vacancies  

2

3
a nD p

N
= ⋅ ⋅       (34) 

As expected, the self-diffusion coefficient is  proportional  to  the  
number  of  vacancies per unit volume n and to the jump 
probability of a vacancy  per  second p. which may be written in 
the form exp ;jp kTν ε⎡ ⎤= −⎣ ⎦         (35) 

 where ν  is a frequency and jε  is the activation energy 

associated with a jump. Finally then, the coefficient of self-
diffusion based on the assumption of the migration of single 
positive ion vacancies may be obtained as 

 [ ]21 exp 2 exp
3 jD C a kT kTν ϕ ε⎡ ⎤= ⋅ ⋅ − −⎣ ⎦        (36) 

The constant C arises from the thermal entropy change 
associated with the production of vacancies.  

We note that in a plot of logD versus 1/kT, the slope of the line according to the above 
interpretation is determined by the sum ( )2jε ϕ+ , i.e., by  the energy  required  for the 
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formation of vacancies plus the activation energy for jumping.  Thus, from the diffusion 
measurements of Na in NaCl, represented in Figure, it follows from the slope in the high-
temperature region that 2jε ϕ+  = 1.80 eV. 

 
Explanation of the break in the logD versus 1/kT curve in the low-temperature region 
 
The break in the logD versus 1/kT curve leading to a smaller slope in the low-temperature region 
may in principle be a result of either or both of the following two causes:   

(1) The presence of divalent positive impurities: Suppose that a salt like NaCl contains in 
solid solution a small amount of SrCl2 or of the chloride of another divalent metal, the 
divalent positive ions occupying sites which are normally occupied by the singly charged 
Na+ ions. The condition of electric neutrality then requires that for each divalent positive 
ion present, there must be a positive ion vacancy. Such crystals then may contain at 
lower temperatures more positive ion vacancies than would be expected on the basis of 
thermal equilibrium alone. In fact, below a critical temperature, the number of vacancies 
per unit volume would then remain constant, the critical temperature being higher the 
larger the density of divalent impurities.  
At high temperatures, however, the number of thermally produced vacancies would 
predominate over the number required by the presence of the divalent ions and the crystal 
would behave in a normal fashion. Now, if the number of vacancies per unit volume is 
independent of temperature, the temperature dependence of the diffusion coefficient is 
according to Eqs. (34) and (35) determined by the factor j kTε−  in the low-temperature 

region. In the log D versus 1/T curve, the activation energy for jumping may be obtained 
separately from the slope of the curve in the low-temperature region.  If the presence of 
divalent metallic ions is accepted as the cause of the break in the log D versus 1/T curve, 

( )2jε ϕ+  is   known   from   the   high-temperature   slope, both jε  and ϕ   may be 

obtained. 
(2) The freezing-in of positive ion vacancies: The latter hypothesis is based on the following 

reasoning:  Suppose a crystal contains a certain number of lattice defects in thermal 
equilibrium at a high temperature. If the temperature is suddenly lowered, it will take a 
certain amount of time for the new equilibrium to be established because this requires a 
migration of vacancies. At lower temperatures such time intervals may be very long and 
consequently, the crystals may contain many more defects than would be permitted by 
the equilibrium conditions. 

For the diffusion of positive ion vacancies in NaCl, it follows from the slope in the low-
temperature region of Figure that jε  = 0.77 eV. Hence, it fits with the slope in the high-

temperature region  ( )2jε ϕ+   = 1.80 eV leading to the experimental value  of ϕ  =  2.06 eV. 
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Note: Diffusion of positive ions does not necessarily take 
place as a result of migration of single positive ion 
vacancies only.  In fact, at least two other possible diffusion 
mechanisms must be considered in the alkali halides: (i) 
Diffusion resulting from migration of pairs. (ii) Diffusion 
resulting from migration of divalent positive impurities 
together with associated vacancies. 
 
The influence of the presence of divalent positive ions on 
the diffusion may be understood as follows: For each 
divalent positive ion, there must be a positive ion vacancy 
to satisfy the neutrality condition. A certain fraction of these 
vacancies are free and contribute to the diffusion as 
discussed above. However, not all these vacancies are free, 
because they are attracted by the divalent positive ions as a 
result of Coulomb interaction. Thus there will be a certain 
number of associated complexes, consisting of a divalent 
positive ion and a neighboring vacant positive ion site. This 
unit may migrate through the crystal as a result of other 
positive ions jumping into the vacancy and as a result of 

possible jumps of the divalent ion into the vacancy. 

Ionic conductivity in “pure” alkali halides 
 
When a potential difference is applied between two opposite faces of an ionic crystal, the 
currents is mainly a result of the migration of ions under influence of the electric field, similar 
to the electrolytic conduction of aqueous solutions of salts. 
 
Two slabs of a salt M+X- are pressed together between two 
electrodes of the metal M. For the polarity as indicated, the two 
following extreme possibilities exist: 

(i) Only positive ions move; in that case the cathode 
will grow at the expense of the anode, the thickness 
of the two salt slabs remaining the same. 

(ii) Only the negative ions move; the X- ions are then 
neutralized at the anode and form new layers of salt.  
Hence the anode decreases in thickness, the cathode 
increases. Furthermore, slab 1 will grow at the 
expense of slab 2. 

If both types of ions contribute to the current, the result will be 
intermediate between (i) and (ii). 
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The ionic conductivity of an isotropic crystal is defined by the scalar equation, I = α E; 
where I is the current density, E is the field strength, and α is the conductivity. If the 
conductivity of the positive ions alone is α+, the transport number of these ions is defined by 
t+ = α+ / α.. Similarly, t- = α - / α. leading to t+ + t- = 1. 
In the alkali halides the experiments show that the positive ions are much more mobile than 
the negative ones. However, that the presence of small amounts of divalent positive ions has a 
marked influence on the measured transport numbers. We have seen above that in the alkali 
halides the ionic current is carried for the greater part by the positive ions. This is not 
always the case, however. In the halides of barium and lead, for example, the negative ions 
are mainly responsible for the ionic conductivity. 
 
In the alkali halides ionic conductivity, like diffusion, is 
explained in terms of the motion of vacant lattice sites. As 
the mobility of the positive ion vacancies is appreciably 
larger than that of the negative ones and it will therefore be 
assumed that the conductivity is entirely due to the motion 
of the former. For simplicity we shall use the geometry of 
Figure, assuming an electric field along the x-axis.  Let us 
denote the number of positive ion sites p er cm3 by N, the 
number of positive ion vacancies per cm3 by n. If the electric 
field in Figure is directed to the right, a positive ion vacancy 
will jump with a higher probability to the left than to the 
right, because it is negatively charged. The potential 
energy along the line of motion may therefore be represented by the full curve in Fig. 7-9 which 
is the resultant of the dashed field-free curve and the linear potential due to the external potential 
difference. Clearly then, the probabilities per second for a jump to the left and to the right are, 

respectively, 1 1exp
23 jp aeE kTν ε←

⎡ ⎤⎛ ⎞= ⋅ ⋅ − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

and
 

1 1exp
23 jp aeE kTν ε→

⎡ ⎤⎛ ⎞= ⋅ ⋅ − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦   
(37) 

 where ν  is a frequency and jε  is the activation energy 

associated with a jump, E represents the field strength. The 
current density, i.e., the net flux of charge passing per second 

through 1 cm2, is then equal to ( )2

1
2

nI p p e
a N ← →= ⋅ −

 

             
(38) 

because 1/2a2 is the number of positive ion sites in a plane 
perpendicular to the x-axis of an area of 1 cm2 and n/N is the 
probability for such a site to be vacant.  From Eq. (38), we 
have  
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2

1 1 1 1exp exp
2 22 3 j j

nI e aeE kT aeE kT
a N

ν ε ε
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ − − − − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭  

2

1 1 1 1exp[ ] exp exp
2 22 3 j

nI e kT aeE kT aeE kT
a N

ν ε ⎧ ⎫⎡ ⎤ ⎡ ⎤⇒ = ⋅ ⋅ ⋅ − ⋅ − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
 

Now, for nearly all practical cases, aeE<<kT, so that in first approximation 

{ }2

1 1 exp[ ] 1 2 1 2
2 3 j

nI e kT aeE kT aeE kT
a N

ν ε⇒ = ⋅ ⋅ ⋅ − ⋅ + − +  

2

1 1 exp[ ]
2 3 j

nI e kT aeE kT
a N

ν ε⇒ = ⋅ ⋅ ⋅ − ⋅
 

2
2

1 exp[ ]
6 j

nI e kT E E
a kT N

ν ε σ⎛ ⎞⇒ = ⋅ ⋅ − ⋅ =⎜ ⎟
⎝ ⎠

            (39) 

Now putting the number of vacancies n in Eq. (39), the conductivity is equal to 

( )
2

exp[ 2 ]
6 j
Ce kT
akT
νσ ε ϕ= ⋅ − +                 (40) 

where  exp[ 2 ].thC S k= −Δ  We note that the current density  is proportional  to  E  only  as long  
as aeE<<kT, i.e.,  Ohms  law is valid  only under  this particular  condition. For very high electric 
fields such that aeE is not small compared with kT, the current increases exponentially with the 
field strength.  According to Eq. (40),  the  conductivity  associated  with  the  positive  ion  
vacancies depends on the two activation energies jε ; and ϕ , as does the coefficient of self-

diffusion. From Eqs. (36) and (40) it follows that  
2NeD

kT
σ = .                      (41) 

It must be emphasized that the Einstein relation is valid only if the conductivity and self-diffusion 
are due to the same mechanism; in the present case the assumption implicit in the derivation of 
Eq. (41) is that both phenomena are a result of the migration of single positive ion vacancies. 
First of all, in the high-temperature region the slope of the diffusion coefficient curve as 
calculated from Eq. (41) appears to be slightly larger than the directly measured one. This may 
be explained as a result of the fact that a small fraction of the ionic current is carried by the 
negative ion vacancies; these, of course, do not contribute to the self-diffusion of Na. In the low-
temperature region, the calculated diffusion coefficient is somewhat smaller than the directly 
measured one. This implies that besides the diffusion of positive ion vacancies, there is some 
diffusion associated with the migration of neutral carriers. For example, pairs of vacancies and 
positive divalent ions associated with vacancies may contribute to the diffusion but will not 
contribute to the ionic conductivity. 
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Plastic deformation 
When a crystal is deformed elastically under influence of applied stresses, it returns to its 
original state upon removal of the stresses. However, if the applied stresses are sufficiently large, 
a certain amount of deformation remains after removal of the stresses: the crystal has been 
plastically deformed. We shall see below that the atomic interpretation of plastic flow of crystals 
requires the introduction of a new type of lattice defects, viz., dislocations. 
 
In many crystals plastic flow results from the sliding of one part of a crystal relative to 
another. In Figure we have illustrated 
schematically how such a process may lead to 
an increase in the length of a crystal under 
influence of tension. The sliding process is 
referred to as slip; the plane and direction in 
which the slip occurs define, respectively, the slip 
plane and the slip direction. This type of 
mechanism evidently deforms the outer surface of the crystal and leads to so-called slip bands. 
The amount of slip associated with a slip band may be several thousand Angstroms.  
 
Plastic deformation is inhomogeneous in the 
sense that only a relatively small number of 
atoms actually take part in the slip process, 
viz., only those atoms which form layers on 
either side of a slip plane. Elastic 
deformation, on the other hand, affects all 
atoms in a crystal. This difference between 
plastic and elastic deformation indicates that 
the atomic interpretation of plastic flow must 
be based on an entirely different model than 
that of elastic deformation. In fact, the 
elastic properties of solids can be understood 
quite well in terms of interatomic forces 
acting in a perfect lattice; plastic 
deformation, however, cannot be discussed 
properly on the basis of a perfect lattice, 
i.e., it cannot be discussed by simply 
extending the theory  of elasticity to the 
case of large stresses and strains. It will be 
shown below that if plastic flow were to 
occur in a perfectly periodic lattice, much 
larger shear stresses would be required than those for which plastic flow is observed. 
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Besides being characterized by inhomogeneity, plastic flow is also anisotropic. Since the 
energy required to move is lowest along the densest planes of atoms, dislocations have a 
preferred direction of travel within a grain of the material. Slip usually takes place preferentially 
in planes of high atomic density, e.g. along {111} planes in a f.c.c. lattice. Also, the direction of 
slip commonly coincides with a direction along which the number of atoms per unit length is 
high. This results in slip that occurs along parallel planes within the grain. These parallel slip 
planes group together to form slip bands, which can be seen with an optical microscope. A slip 
band appears as a single line under the microscope, but it is in fact made up of closely spaced 
parallel slip planes as shown in the image. 
 
Critical shear stress 
 
Let us consider a cylindrical crystal of cross section A 
under influence of a force F. Let the normal to the active 
slip plane make an angle α  with F. Let the angle between 
the slip direction and F be β .  The resolved shear stress, 
i.e., the force acting per unit area of the slip plane in the slip 
direction, is then given by ( )cos cos ,F Aτ α β=  (41) 

since the area of the slip plane is ( )cosA α . Similarly, the 

tensile stress per unit area normal to the slip plane is ( ) 2cos .F Aτ α=   (42) 

Suppose now that for given values of α  and β , the force F is gradually increased from zero. 
Even for relatively small stresses a certain amount of plastic flow occurs, but the rate of flow is 
small. It turns out, however, that the rate of flow increases very rapidly whenever the resolved 
shear stress τ  reaches a critical value cτ . At the same time, the results indicate that the tensile 
stress normal to the slip plane is of little or no influence on the mechanism of slip. For pure 
crystals, the critical shear stress lies in the range between 106-107 dynes per cm2.  
 
Prove that, the theoretical critical shear stress based on a perfect lattice is much larger than 
the observed values for pure crystals.  
 
For this purpose, we resort to a simplified model suggested by Frenkel. With reference to Figure, 
consider a cross section through two neighboring atomic planes separated by a distance d. 
Without external forces, let the fully drawn circles represent the equilibrium positions of the 
atoms.  Suppose  now that a shear stress τ  is applied, and that as a result, all atoms in the upper 
plane  are displaced  by  an amount  x  relative  to  their  original  position. 
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Changing the role of dependent and 
independent variables, we may say 
that for a displacement x, a shear 
stress ( )xτ  is required. Suppose that 

we want to plot τ  as a function of x.  
First we note that as a result 1e 
periodic nature of the system, τ  will 
vanish for x = 0, a/2, a, etc., where a 
is the distance between neighboring 
atoms within the planes. 
Oversimplifying the problem, we 
shall assume that this periodic 
function is given by ( ) ( )sin 2cx x aτ τ π=               (43) 

cτ  is evidently the critical shear stress in this model. We can apply the usual theory of elasticity 

for ,x a then ( ) ( )2cx x aτ τ π         (44) 

On the other hand, for small elastic strain, applying Hooke’s law, ,G x dγ τ= =    (45)  
where G is the shear modulus.  

From the last two equations ( ) ( )( ) ( )( )2 2 2 2 .c a x a G d G a d Gτ τ π τ π τ π π= = =  where 

the last approximation is justified because .a d  Since G = 1011 dynes per cm2, one obtains in 
this model a theoretical shear stress cτ = 1010 dynes per cm2, which is several orders of 
magnitude larger than the observed ones.  

Objection against Frenkel’s Model 
 
Frenkel’s model assumes that the atomic planes glide past each other in the manner assumed 
above. It was assumed that the atoms of the upper atomic plane move simultaneously relative to 
the lower plane; this assumption is tied up with the assumption of a perfect lattice and here we 
are at the root of the difficulty. 
 
Realisation of Slip motion and dislocation 

In an attempt to remove the said difficulty, let us assume that the slip process is governed, not by 
the simultaneous motion of the atoms of one plane relative to another, but by the consecutive 
motion of these atoms. Slip motion based on the dislocation model is analogous to movement of 
a caterpillar (worm). Caterpiller moves forward by displacing its segments one after the other 
rather than by a simultaneous displacement of all the segments. Understanding the movement of 
a dislocation is the key in understanding why dislocations allow deformation to occur at much 
lower stress than in a perfect crystal. 
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The dislocation model for slip may be introduced with 
reference to the crystal of Figure a; let the plane PQR 
be a slip plane. This plane has been redrawn in Figure 
(b). In the slip plane consider an arbitrary closed curve 
ABC; the region inside this curve is hatched in Figure 
(b). Let us suppose that (in some way or other) the 
material located over the hatched area in the upper 
half of the crystal is displaced by an amount b relative 
to the lower half of the crystal; at the same time, the 
material in the upper half lying over the area outside 
ABC is left undisplaced. In this manner we have 
obtained a situation in which only a fraction of the 
upper half of the crystal has slipped relative to the lower half. 

The line ABC introduced above marks the boundary in the slip plane between slipped and 
unslipped material; this line is called a dislocation line. The vector b which defines the 
magnitude and direction of the slip is called the Burgers vector. Since the atoms always seek 
positions of minimum energy, it will be evident that b must connect two atomic equilibrium 
positions, i.e., the possible vectors b are determined by the crystal structure. In a bcc crystal, 

[ ] 2 2 1 1 1111 3 2.
2 4 4 4
ab b a b a⎡ ⎤= ⇒ = + + ⇒ =⎢ ⎥⎣ ⎦

 In case of fcc, [ ]110 2 .
2
ab b a= ⇒ =  
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The ratio f of the area ABC and the total area of the slip plane will be referred to as the 
fraction of slip that has occurred in this plane. Thus, if in some way or other the area ABC could 
be made to grow, f would increase and for f = 1 the whole upper half of the crystal would be 
displaced by an amount b relative to the lower half. For f < 1, the average displacement of the 
upper half relative to the lower half is fb. 
 
Depending on the magnitude of the Berger vector b, dislocation can be classified as: 

i) Perfect Dislocation: The Berger vector (b) is equal to an exact inter-atomic distance 
in case of perfect dislocation. If b is a non-integral multiple of the inter-atomic 
distance, then it is known as imperfect dislocation. If b is smaller than the inter-
atomic distance, we call it partial dislocation. 

ii) Super Dislocation: If the magnitude of b associated with dislocation is several times 
the inter-atomic distance, the dislocation is called super dislocation. 

 

Density of dislocations 
  
We see, a single dislocation line sweeping across a slip plane gives rise to a displacement of the 
order of a few Angstroms. Thus any appreciable plastic deformation must be the result of a large 
number of dislocations sweeping across many slip planes. The rate of plastic is expected to be 
proportional to the total length of all active dislocation lines and the average velocity with which 
the elements of these lines move. So the concept of “dislocation density”, is introduced as  

,S Vρ =  where S is the total length of the dislocation lines and V is the volume of the crystal. 
Let us consider a line element dS of a dislocation line such as ABC in Figure 3-15. Let v be the 
velocity of the element along the direction of the normal to dS in the slip plane. When H is the 
height of the crystal and A is the area of the slip plane, the increase in strain per second due to the 
motion of the element dS is equal to / ,d dt v dS b AHγ =  γ  being the strain. 
Considering the rate of flow resulting from all dislocations in  planes parallel to the plane PQR in 
Figure 3-15, we have to sum the above expression in a suitable fashion, i.e., we must replace dS 
by the total length S of all these dislocations and v by some average velocity v . Hence, 

/d dt v S b AH b vγ ρ= = , where ρ  is the dislocation density. 

 
Edge and Screw Dislocations 
 
The dislocation is called a line defect because the locus of defective points produced in the lattice 
by the dislocation lie along a line. A pure edge or Taylor-Orowan dislocation is defined as a 
dislocation for which the Burgers vector b is everywhere perpendicular to the dislocation line. A 
screw or Burgers dislocation is defined as a dislocation for which the Burgers vector b is 
everywhere parallel to the dislocation line. Thus in Fig. 3-l5b the vertical elements are of the 
edge type, the horizontal elements are of the screw type; the remainder is mixed edge and screw.  
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Edge dislocations:  The simplest edge dislocation is one for which the dislocation line is straight. 
Suppose the block of 
material is cut across 
the area ABEF so that 
across this area the 
upper and lower parts 
are disconnected. 
The upper half is then 
pushed sideways such 
that the line A' B' 
which initially 
coincided with AB is shifted by an amount b as indicated. If in this position the two halves were 
glued together, we would have produced an edge dislocation. The upper half of the block will 
clearly be under compression, the lower half under tension. A square network of lines drawn on 
the front face BCD before and after the operation would look as indicated in Figure b. This strain 
pattern suggests the existence of an extra half plane (EF) in case of the edge dislocation. Note 
that if the extra half plane HE were displaced to the right, slip would progress,  and  when  HE  
has  finally  reached  the  right-hand  side  of  the block, the upper half  of the block has 
completed slip by an amount b. So the edge dislocation moves parallel to the direction of stress. 
Edge dislocations for which the extra half plane lies above the slip plane are called positive. If 
the extra half plane lies below the slip plane, one speaks of a negative edge dislocation. 
 

The presence of an extra half plane of atoms in an edge dislocation restricts the motion of 
an edge dislocation mainly to the slip plane. The reason is that any motion perpendicular to the 
slip plane requires either a growth or a reduction of the half plane.  Thus the easy direction of 
motion of an edge dislocation is in the slip plane since the number of atoms in the extra half 
plane is conserved in this case. Any motion of an edge dislocation perpendicular to the slip plane 
is termed nonconservative because it involves either rejecting or accepting “extra” atoms. 
 
For better perception: 
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Additional figures for perception: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Strain energies of dislocations 
 
The strain energy involved in the formation of an edge 
dislocation can be estimated from the work involved in 
displacement the cut OA a distance b along the slip plane.  
Let us consider the cross section of a cylindrical piece of 
material; the axis of the cylinder will be taken as the z-axis of 
a Cartesian coordinate system. Suppose we produce a cut in 
the plane y = 0, which extends between the axis and the outer 
surface as indicated. We now let the material above the cut slip 
to the left by an amount b. We now let the material above the 
cut slip to the left by an amount b, leading to the configuration indicated by the dotted line. We 
have then produced a positive edge dislocation along the z-axis with a Burgers vector along the 
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x-axis; the plane y = 0 is the slip plane. Then the strain energy can be calculated as 

( )
2

1

0

ln ,
4 1

rGbU
rπ ν

=
−

 G and ν  being the shear modulus and Poisson ratio. 

 
Strain energy of a screw dislocation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The elastic distortion around an infinite-long, straight dislocation can be represented in terms of 
a cylinder of elastic material. Let us consider the screw dislocation AB shown in Fig. (a). A 
radial shift LMNO was cut in the cylinder parallel to the z-axis and the free surfaces displaced 
rigidly with respect to each other by the distance b, the magnitude of 
the Burgers vector of the screw dislocation, in the z-direction. 
 
We consider the shell of radius r and thickness dr. The shell is 
assumed to be stressed by an amount b in a circumferential length 
2πr.  

The shear strain = 
2

b
rπ

 

The shear stress = G X shear strain = G X 
2

b
rπ

 

Hence, the elastic energy dE of the shell of volume dV due to 
presence of dislocation = (1/2) X stress X strain 
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1 2
2 2 2

Gb b rldr
r r

π
π π

= ⋅ ⋅ ⋅ , where 2dV rldrπ= , l being the length of the cylinder. 

2

4
Gb drdE l

rπ
∴ = ⋅ ⋅

 

The elastic energy per unit length of the cylinder, 
1

0

2 2
1

0

ln ;
4 4

r

r

rGb dr GbE E
r rπ π

⎛ ⎞
= ⇒ = ⎜ ⎟

⎝ ⎠
∫  

0r  and 1r  

are the approximate upper and lower limits for the variable r. 
 
Possible values of 0r  and 1r  
 
Distribution of the dislocation is random. The potential field of a certain dislocation exists up to 
a certain limit due to the presence of other neighbouring dislocations. Experimental observation 
shows that the limiting distance in crystal is approximately 104a (atomic spacing), which is the 
measure of the upper limit ( )1r . The lower limit ( )0r  cannot be zero since elastic energy would 

be infinite at 0 0r = . It is noted that Hooke’s law does not holds good near the dislocation line 

due to highly stressed region. It is reasonable to consider 0r  equal to Berger vector b. For perfect 

dislocation, 0 .r b a= =  

So the elastic energy per unit length of the cylinder, 
2 2 4

1

0

10ln ln
4 4

rGb Gb aE
r aπ π

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

( )
2

4ln 10
4

GbE
π

∴ =  

If we take 1

0

ln 4r
r

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

, the total elastic energy per unit length of the cylinder becomes 2.E Gb=  

So, elastic energy is found directly proportional to b2. It becomes minimum for dislocation is 
obtained in stable equilibrium. Hence we find dislocations in the most densely packed planes. 
 

Planar Defects 
 
Stacking Faults and Twin Boundaries 
 
A disruption of the long-range stacking sequence can produce two other common types of crystal 
defects: 1) a stacking fault and 2) a twin region. A change in the stacking sequence over a few 
atomic spacings produces a stacking fault whereas a change over many atomic spacings produces 
a twin region.  
A stacking fault is a one or two layer interruption in the stacking sequence of atom planes. 
Stacking faults occur in a number of crystal structures, but it is easiest to see how they occur in 
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close packed structures. It is known that face centered cubic (fcc) structures differ from 
hexagonal close packed (hcp) structures only in their stacking order. For hcp and fcc structures, 
the first two layers arrange themselves identically, and are said to have an AB arrangement. If 
the third layer is placed so that its atoms are directly above those of the first (A) layer, the 
stacking will be ABA. This is the hcp structure, and it continues ABABABAB. However it is 
possible for the third layer atoms to arrange themselves so that they are in line with the first layer 
to produce an ABC arrangement which is that of the fcc structure. So, if the hcp structure is 
going along as ABABAB and suddenly switches to ABABABCABAB, there is a stacking fault 
present.  
Alternately, in the fcc arrangement the pattern is ABCABCABC. A stacking fault in an fcc 
structure would appear as one of the C planes missing. In other words the pattern would become 
ABCABCAB_ABCABC.  
If a stacking fault does not corrects itself immediately but continues over some number of atomic 
spacings, it will produce a second stacking fault that is the twin of the first one. That means the 
deformed part of the crystal is a mirror image of the undeformed part after twinning. For 
example if the stacking pattern is ABABABAB but switches to ABCABCABC for a period of 
time before switching back to ABABABAB, a pair of twin stacking faults is produced. The red 
region in the stacking sequence that goes ABCABCACBACBABCABC is the twin plane and the 
twin boundaries are the A planes on each end of the highlighted region. 
 
Grain Boundaries in Polycrystals 
 
Another type of planer defect is the grain boundary. Up to this point, the discussion has focused 
on defects of single crystals. However, solids generally consist of a number of crystallites or 
grains. Grains can range in size from nanometers to millimeters across and their orientations are 
usually rotated with respect to neighboring grains. Where one grain stops and another begins is 
know as a grain boundary. Grain boundaries limit the lengths and motions of dislocations. 
Therefore, having smaller grains (more grain boundary surface area) strengthens a material. The 
size of the grains can be controlled by the cooling rate when the material cast or heat treated. 
Generally, rapid cooling produces smaller grains whereas slow cooling result in larger grains. 
For more information, refer to the discussion on solidification. 

Bulk Defects 

Bulk defects occur on a much bigger scale than the rest of the 
crystal defects discussed in this section. However, for the sake of 
completeness and since they do affect the movement of 
dislocations, a few of the more common bulk defects will be 
mentioned. Voids are regions where there are a large number of 
atoms missing from the lattice. The image to the right is a void in a 
piece of metal The image was acquired using a Scanning Electron 
Microscope (SEM). Voids can occur for a number of reasons. 
When voids occur due to air bubbles becoming trapped when a 
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material solidifies, it is commonly called porosity. When a void occurs due to the shrinkage of a 
material as it solidifies, it is called cavitation.  

Another type of bulk defect occurs when impurity atoms cluster together to form small regions 
of a different phase. The term ‘phase’ refers to that region of space occupied by a physically 
homogeneous material. These regions are often called precipitates.  


