
FERROELECTRICITY 
 

Lecture Note // PP  Page 1 
 

General properties of ferroelectric materials 
 

In many respects analogous to the magnetic behavior of ferromagnetic materials, 
ferroelectric solids are so called because they are spontaneously polarized, i.e., it is polarized 

in the absence of an external field. The direction of the 
spontaneous polarization may be altered under 
influence of an applied electric field. In general, the 
direction of spontaneous polarization is not the same 
throughout a macroscopic crystal. Rather, the crystal 
consists of a number of domains; within each domain the 
polarization has a specific direction, but this direction 
varies from one domain to another. 

 
On the basis of the domain concept, the occurrence of 

hysteresis in the P versus E relationship can be explained as follows: With reference to Figure, 
let us consider a crystal which initially has an over-all polarization equal to zero, i.e., the sum 
of the vectors representing the dipole moments of the individual domains vanishes. When an 
electric field is applied to the crystal, the domains with polarization components along the 
applied field direction grow at the expense of the “antiparallel” domains; thus the polarization 
increases (OA). When all domains are aligned in the direction of the applied field (BC), the 
polarization saturates and the crystal has become a single domain. 

 
The extrapolation of the linear part BC to zero external field gives the spontaneous 

polarization Ps. Thus, when we speak of “spontaneous polarization” we have in mind the 
polarization within a single domain and not the over-all polarization of a crystal. When the 
applied field for a crystal corresponding to point B in Figure is reduced, the polarization of the 
crystal decreases. But for zero applied field there remains the remnant polarization Pr where Pr  

refers to the crystal as a whole. The field in opposite direction required to make the polarization 
zero again is called the coercive field Ec. 

A  necessary,  but  not  sufficient, condition  for  a  solid  to  be  ferroelectric  is  the  
absence  of  a center  of symmetry.  In total there are 21 classes of crystals which lack a center of 
symmetry; the classes are based on the rotational symmetry of crystals. Of these 21 classes, 20 
are piezoelectric, i.e., these crystals become polarized under influence of external stresses. Ten 
out of the 20 pieozelectric classes exhibit pyroelectric effects.  These pyroelectric crystals are 
spontaneously polarized. However, the polarization is usually masked by surface charges which 
collect on the surface from the atmosphere; when the temperature of such a crystal is altered, the 
polarization changes and this change can be observed, hence the name pyroelectricity. The 
ferroelectric materials are part of the group of spontaneously polarized pyroelectrics.  However, 
they have the additional property that the polarization can be reversed by an applied field. 
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The ferroelectric properties of a ferroelectric disappear above a critical temperature Tc; 
this temperature is called the ferroelectric Curie temperature. Associated with the transition from 
the ferroelectric to the nonferroelectric phase are anomalies in other physical properties.  Thus 
for a first-order transition, there will be a latent heat; for a second-order transition the specific 
heat will exhibit a discontinuity. We should also mention that the spontaneous polarization in the 
ferroelectric state is associated with spontaneous electrostrictive strains in the crystal; thus the 
ferroelectric structure has a lower symmetry than the nonpolarized state. At the transition 
temperature a change in crystal structure is therefore observed. 

Classification and properties of ferroelectrics 

Ferroelectric crystals may be classified into two main groups, order-disorder and displacive. One 
may define the character of the transition in terms of the dynamics of the lowest frequency 
(“soft”) optical phonon modes. If a soft mode can propagate in the crystal at the transition, then 
the transition is displacive. If the soft mode is only diffusive (non-propagating) there is really not 
a phonon at all, but is only a large amplitude hopping motion between the wells of the order-
disorder system. Many ferroelectrics have soft modes that fall between these two extremes. 
 
Order-disorder class: The order-disorder class of ferroelectrics includes crystals with hydrogen 
bonds  in  which  the  motion  of  the  protons  is  related  to  the  ferroelectric properties.  
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Example: Rochelle Salt (NaKC4H4O6·4H2O); Potassium dihydrogen phosphate  (KH2PO4) 
 

 
Note: Neutron diffraction data show that above the Curie temperature the proton distribution 
along the hydrogen bond is symmetrically elongated. Below the Curie temperature the 
distribution is more concentrated and asymmetric with respect to neighboring ions, so that one 
end of the hydrogen bond is preferred by the proton over the other end, giving a polarization. 
 
Displacive class: The displacive class of ferroelectrics includes ionic crystal structures closely 
related to the perovskite structures. 
 
Example: BaTiO3. It has cubic structure above TC, below TC lattice structure is changed. Ba2+ 
and Ti4+ ions displaced relatively to the O2- ions, which is the root of spontaneous 
polarization.  

 
 
 
 
 
 
 
 
 
 
 
Rochelle Salt: Rochelle salt has the peculiar property of being ferroelectric only in the 
temperature  region  between  -18°C and 23°C,  i.e., it has two transition temperatures.  In the 
region above 23°C and below -l8°C it crystallizes in the orthorhombic structure. In the 
ferroelectric phase the crystal is monoclinic. The spontaneous polarization occurs along the 
direction of the original orthorhombic a-axis.  Thus Rochelle salt has only one polar axis and 
two possible polarization directions (+ and - along the a-axis).  



FERROELECTRICITY 
 

Lecture Note // PP  Page 4 
 

 
 
 
 
 
 
 
 
 
 
 
 

Note that the replacement of hydrogen by deuterium has a marked influence on the magnitude 
of the spontaneous polarization and on the temperature range over which the material is 
ferroelectric. 
 
Potassium dihydrogen phosphate, KH2PO4:   In contrast with Rochelle salt, KH2PO4 has 
one Curie temperature, Tc = 123°K. Above the transition temperature it has a tetragonal 
structure (3 mutually perpendicular axes a, a, c); below Tc it is orthorhombic (3 mutually 
perpendicular axes a, b, c). The c-axis is the spontaneous polarization direction. 
 
Barium titanate (BaTiO3): BaTiO3 is the 
most important and most thoroughly studied 
representative of the perovskites. In the 
nonpolarized phase it has cubic symmetry. The 
Ba2+ ions occupy   the   corners   of   a cube, 
the oxygen ions are located at the centers of 
the faces, and the Ti4+ ion is at the center. 
 
Below the Curie temperature, the direction of 
the spontaneous polarization and the crystal 
structure vary in the following fashion: 
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BaTiO3 has three ferroelectric phases. As the spontaneous polarization sets in at 393°K, the 
crystal expands in the direction of polarization (c-axis) and contracts perpendicular to it (a-
axis). 

 
 

 
 

 
Polarization catastrophe 
 
We may speak of a polarization catastrophe in which for some critical condition the polarization 
becomes very large. Considering the local field approximation, we find the dielectric constant, 
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In a polarization catastrophe the local electric field caused by the ionic displacement is larger 
than the elastic restoring force, thereby giving an asymmetrical shift in the positions of the ions. 
Higher order restoring forces will limit the shift to a finite displacement. This idea can be 

apprehended by considering LST relation: 
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dielectric constant and ( )0ε  being static dielectric constant. Tω  is the frequency TO (transverse 
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optical) phonon and Lω , the LO (longitudinal optical) phonon frequency. The relation 

( ) ( )0

0 C
T T

ε ≈
−

 gives the values of ( )0T T Tω ∝ −  when  T  approaching towards 0T . In the 

condition of polarization catastrophe ( )0T T→  the frequency of TO phonon decreases 

drastically.  
 
 
 
 
 
 
 
 
 
 
 
The dipole theory of ferroelectricity 
 

The existence of spontaneous polarization in general requires a physical model in 
which the dipole moments of the different unit cells are oriented along a common direction. 
This brings ferroelectrics in the class of cooperative phenomena,  the cooperation 
between the different unit cells in this case consisting of a tendency for a given unit cell to 
have its dipole direction parallel to that of its neighbors. 

The essential point in the dipole theory is that the internal field iE  which tends to 
orient a given dipole is assumed to be of the form, iE E Pγ= +     (1) 
where E is the externally applied field, P is the polarization, and γ  is the internal field 
constant. This expresses the cooperation between the dipoles, because the larger P, the larger 

iE  and the stronger the tendency for the dipole under consideration to align itself in the 
direction of the polarization of its surroundings. 
As long as one is far away from saturation of the polarization, one may write, 

( )2cos 3 iP N N kT Eμ θ μ= =       (2) 

where N  is the number of dipoles per unit volume. 
From Eqs. (1) & (2), 
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        (3) 

Here,  ( )2 3N kθ γ μ=  is the extrapolated Curie temperature and θ γ  being Curie constant. 

To show that Eq. (1) also leads to spontaneous polarization, we make use of the Langevin 
expression, which allows for saturation effects. 

This gives ( ) ( )( )cos .iP N N L E kT N L E P kTμ θ μ μ μ μ γ= = = +    (4) 

( )L x  is the Langevin function. To show Eq. (1) indeed leads to the possibility of spontaneous 

polarization. Putting E = 0 in Eq. (4), we may write ( )satP N P P L xμ = =   (5) 

Where x P kTμγ= or ( )2P N kT N xμ μ γ= .      (6) 

satN Pμ =  represents evidently the saturation  polarization  corresponding to complete alignment  
of the dipoles. 

 
 
 
 
 
 
 
 
 

The fully drawn curve represents the Langevin function. The slope of L(x) at the origin is 1/3. 
However, P/Psat should also satisfy Eq. (6), which corresponds to a set of straight lines passing 
through the origin, the slope of the lines being given by 2kT Nμ γ . Thus the solution for satP P  
corresponding to the temperature T1 is determined by the intersection of L(x) and the line of slope 

2
1 .kT Nμ γ  It is observed that as T decreases, the slope of the straight line Eq. (6) decreases 

and the solution P/Psat approaches unity. Also, when the temperature is higher than a critical 
value determined by 2 1 3ckT Nμ γ =  or 2 3 .cT N kμ γ θ= =    (7) 

In other words, there is no spontaneous polarization for .T θ  
 
Note: One may conclude the assumption for Eq. (1) for a model of freely rotating dipoles 
accounts for: (a) the Curie-Weiss law above the Curie temperature; (b) the possibility of  
spontaneous    polarization    below    the   Curie temperature; (c) qualitatively the correct 
temperature  behavior  of  P/Psat versus temperature in the ferroelectric region. 
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Estimation of extra specific heat (discontinuity in specific heat) from 
dipole theory 
 

An anomalous peak in the specific heat as function of temperature observed for 
ferroelectrics in the vicinity of the Curie temperature. We try to find the relation between the 
internal field constant γ  appearing in the above theory and the appearance of anomalous peak in 
specific heat. In the completely ordered state, when all dipoles are aligned in parallel, the energy 
of a given dipole in the field of all others is equal to  satPμγ−  as we know, the energy of a dipole 
µ in a field E is given by -µ · E. Thus the energy of polarization in the ordered state is per unit 
volume equal to 2satN Pμγ− , where the factor of ½ is introduced because for each pair of 
dipoles the energy is counted twice. Now, as the temperature is increased to above the Curie 
temperature, the spontaneous polarization decreases to zero. It is evident that an “extra” amount 
of heat must be supplied to the crystal to bring about the transition from the completely ordered 
to the completely disordered state. Let Ce represent the extra specific heat per unit volume; we 
may then write   2( ) 2 2e sat satC T dT N P Pμγ γ= =∫     

 (8) 
Thus, if ( )eC T  and Psat are known from experiment, Eq. (8) allows one to calculate the internal 
field constant γ . 
 
Objections against the dipole theory 
 

In connection with Rochelle salt, the following objections may be raised against 
the dipole theory. 

(i) In the vapor, H2O has a dipole moment of 1.85 Debye units; if we assume this to be 
the same in Rochelle salt, one calculates for the maximum spontaneous polarization 
Psat= Nµ = 1.52 X 1022  X 1.85 X 10- 18 = 28120 esu. The experimental value is about 
750 esu which is smaller by a factor of nearly 40.  

(ii) Furthermore, the dipole theory does not predict the existence of two Curie points, as 
observed for Rochelle salt. 

(iii)A  much  more  serious  objection  against  the  dipole  theory  is  of  a theoretical  
nature and refers to the use of the internal field given by Eq. (1). In fact, if the 
dipole theory based on Eq. (1) were correct, a large number of polar liquids should 
also be ferroelectric; we know, on the other hand, that ferroelectric materials are 
rare. On considering the concept of reaction field, it is finally observed that γ  is not a 
constant but that it depends on the dielectric constant in such a manner that as ε  increases, 
γ  decreases. 

 



FERROELECTRICITY 
 

Lecture Note // PP  Page 9 
 

Note: Let us consider a spherical cavity of molecular radius inside a dielectric in the 
absence of an external field. Suppose a dipole µ is located at the center of the cavity. 
The dipole will polarize the surrounding material and this in turn will produce a 
“reaction field” inside the cavity. If the dielectric is homogeneous, it can be shown that 
the reaction field E, is homogeneous and parallel to the dipole µ. It is evident that the 
reaction field does not exert a torque on the dipole. If one now applies to this system a 
homogeneous external field E and calculates the internal field by the Lorentz method, a part 
of the internal field is contributed by the time average of the reaction field; this part is equal to 
Er<cos θ> where θ  is the angle between µ and E and, as said above, does not produce a 
torque on the dipole.  To find the actual field strength tending to orient the dipole, one must 
subtract the reaction field component in the external field direction. By putting this value it is 
observed that γ  is not a constant but that it depends on the dielectric constant in such a 
manner that as ε  increases, γ  decreases. 
 
Curie-Weiss Law for a nondipolar solid 
 
We have seen that the dipole theory led to a Curie-Weiss 
law for the susceptibility above the Curie temperature with 
an expression of the type Eq. (1) for the internal field.  But 
it is also pointed out that the internal field could not be 
considered the field producing a torque on the dipoles. On 
the other hand, the objection of Onsager was that 
electronic and ionic displacements are not referred in dipole 
theory. In this section it will be shown that in case the 
dielectric constant of a material is large compared with 
unity, a Curie-Weiss law may be obtained which is solely 
due to electronic and ionic displacements. 
For the sake of argument, let us assume that, for a particular 
nondipolar solid, the Clausius-Mosotti expression holds 

0

1
2 3

N Nε α β
ε ε
−

= =
+

          (9) 

Here N represents the number of unit cells per cm3 and α  represents the total 
polarizability per unit cell assuming that α  is independent of temperature. 
As long as ε is of the order of 10 or smaller, any changes in N resulting from thermal 
expansion do not affect the value of ε  to any great extent. On the other hand, if ε >>1, the 
left-hand side of Eq. (9) approaches unity and it is observed from Figure that small variations 
in Nβ  may lead to large changes in the dielectric constant. In order to determine the 
temperature coefficient of ε, we differentiate  Eq. (9) with  respect  to  T, 
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where 1 dN
N dT

 corresponds to volume expansion coefficient and λ  is the linear expansion 

coefficient. 
 

Making use of the fact that ε >>1, so that ( )( ) 22 1ε ε ε+ − ≈ , one obtains 2

d dTε λ
ε

= −∫ ∫  

or 1 .C
T T

λε
θ θ

= =
− −

 The last expression has indeed the form of the Curie-Weiss law; the 

Curie temperature θ  enters as a constant of integration. It is of interest to note that the Curie 
constant is equal to the reciprocal of the linear coefficient of expansion. The variation of linear 
coefficient of expansion is controlled by TO phenomena in the range ε >>1. 
 
Theory of spontaneous polarization of BaTiO3 
 

The existence of three transitions in BaTiO3 to is based on the assumption that the 
displacement of oxygen ions is essential in the context of spontaneous polarization. Devonshire 
pointed out that the restoring force for small oxygen displacements in a direction perpendicular 
to the plane of four surrounding Ba2+ ions is probably small. This is the result of the fact that O2- 
ions are tightly squeezed between Ba2+ ions.  

One can associate three O2- ions with each unit cell as six ions belong to two unit cells. 
They can be denoted by Ox, Oy, and Oz. When cooled from the region T > Tc, the cubic lattice 
contracts and at Tc one of the three O2- ions (say, Oz) is squeezed out of the plane of the Ba2+ 
ions. This produces a dipole moment per unit cell along z-axis. One of its parts is equal to 2edz 
where dz is the displacement of the Oz ion relative to the plane of Ba2+ ions. At the same time, 
this allows a possible contraction of the lattice in the plane of the Ba2+ ions. The direction of 
polarization corresponds to the c-axis of the tetragonal structure and sets in along one of the cube 
edges at Tc. As the temperature is lowered further, Oy and Ox ions are successively squeezed out 
of their normal positions, leading to a polarization along a face diagonal [011] and a body 
diagonal [111], respectively. 
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Agreement with experiment 
 

Experimentally it is found that in the tetragonal region the contraction of the lattice 
is proportional to the square of the polarization and satisfies the relation: 

12 21.2 10a a P−Δ = ×      (11)  

where a is the cube edge just above the Curie point and aΔ
is the contraction in the tetragonal phase. Now, in the 
cubic phase, the sum of the radii of the Ba2+ and 02- ions 
is equal to 2 .a  We suppose now that the oxygen ion 
is displaced out of the plane of Ba2+ ions by an amount z 
and let it be assumed that the radii of the ions remain 
constant and that the oxygen and barium ions remain in 
contact. With reference to Figure it then follows that if 
( )a a−Δ  is the new edge of the square of Ba2+ ions, we must have  

( )2 2 22 2a a a z− Δ = −  

As long as 1a aΔ , this yields ( )2a a z aΔ =       (12) 

The  dipole  moment  per  unit  volume  resulting  only  from  the  displaced oxygen ions is 
equal to 32

zOP ez a= and it thus follows from Eq. (12) that 

( )4 2 2 12 24 2.8 10
z zO Oa a a e P P−Δ = = ×         (13) 

Both expressions are of the same form, and that if 
zOP  represents two thirds of the total 

polarization, the agreement is quantitative. 
 
Landau theory of Phase Transitions 
 

A ferroelectric with a first-order phase transition between the ferroelectric and the 
paraelectric state is distinguished by a discontinuous change of the saturation polarization at the 
transition temperature. In the second-order transition the degree of order goes to zero without a 
discontinuous change as the temperature is increased. A thermodynamic theory has the 
advantage of being independent of any particular atomic model and thus leads to quite 
general conclusions. Such a theory does not provide the physical mechanism responsible 
for the ferroelectric properties of a given material. 

 
Let us consider a solid which is ferroelectric for temperatures T < Tc; let the 

external pressure be zero and let there be no applied electric field. If the crystal is in 
equilibrium at a given temperature, the free energy of the crystal F should be a minimum. 
For simplicity we shall assume that in the ferroelectric  region the spontaneous 
polarization occurs  along  a single axis; this  would be the case  for the  Rochelle  salt,  
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KH2PO4 and for the upper transition of BaTiO3. Let F0 represent the free energy of the 
unpolarized crystal; the free energy F of the polarized crystal may then be expanded as a 
power series in the polarization 
 

2 4 6
0 1 2 3

1 1 1 ........
2 4 6

F F c P c P c P− = + + +                     (14) 

The coefficients c are functions of temperature; the numerical factors are introduced for 
later convenience. Note that since we want the free energy to be the same for “positive” 
and “negative” polarization along the polar axis, only even powers of P are included. In 

thermal equilibrium, 0
T

F
P
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

. The spontaneous polarization, thereby, satisfies the equation: 

3 5
1 2 3 ........ 0s s sc P c P c P+ + + =          (15) 

 
It is observed that 0sP =  is always a root of this equation and that and c1, c2, c3 

are all positive, the root 0sP =  will correspond to the only minimum of the free energy 
and thus spontaneous polarization would not occur. However, if as a result of the 
temperature dependence the coefficient c1 would become negative, F would have a 
maximum for 0sP =  and there would be at least one nonvanishing value for sP  for which 
F would  be  a  minimum,  i.e.,  spontaneous  polarization  would  occur. 
 

Second-order transition: 
 

 If the coefficients c1, c2, c3 are all positive and the value of c1 varies from positive to 
negative as the temperature is lowered, one obtains free energy curves as illustrated in 
Figure. The corresponding spontaneous polarization as function of temperature is 
indicated in Figure.  

The transition temperature 
corresponds to c1 = 0. Assuming 
in Eq. (15) that the term with c3 is 
negligible, one obtains for the 
spontaneous polarization, 

2
1 2 .sP c c= −    (16) 

 
sP  is a continuous function of temperature; a transition of this type is not associated with a 

latent heat but with a discontinuity in the specific heat and is called  a  second-order  
transition. 

Let us now consider the susceptibility of the crystal above and below the 
transition temperature. For this purpose it is necessary to apply a small electric field to 
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the crystal. Now, for a crystal under zero pressure in an applied field E, we may write 
according to thermodynamics, .dF SdT EdP= − +  
Above the transition temperature the polarization will be small for small applied fields, 
and in this region we may neglect all terms on the right-hand side of Eq. (14) except the 
first. For T > Tc, 1E F P c P= ∂ ∂ =  and 11 a E P cχ = ∂ ∂ =      (17) 

aχ  being susceptibility above the Curie temperature.  The susceptibility in this temperature 

range is given by the Curie-Weiss law 1 ,a
C Tc

T C
θχ

θ
−

= ⇒ =
−

 where C  is the Curie constant. 

Since the transition at T = Tc corresponds to  1 0,c =  we have cTθ =  which leads to 

1 1 .c
a

T Tc
C

χ−
= =        (18) 

Similarly, in the ferroelectric region, we obtain, 
 3 2

1 2 1 21 3bE F P c P c P E P c c Pχ= ∂ ∂ = + ⇒ = ∂ ∂ = +     (19) 

bχ  being susceptibility above the Curie temperature.  

For small applied fields, sP P≈  in this region, so that according to Eqs. (16) and (19) we 
have 

( )1 2 1 2 11 3 2b c c c c cχ = + − = −        (20) 

If we still assume the temperature dependence of 1c  on 
the ferroelectric side of cT , we further obtain from Eqs. 

(19) and (20),  ( )
1

2
1 2 c

b

T T
c

C
χ

−
= − = −           (21) 

In connection with the entropy associated with 
spontaneous polarization, the entropy is 

( ) ( )2
0 1

1
2P

S F T S P c T= − ∂ ∂ = − ∂ ∂  

( )4
2

1 ......
4

P c T− ∂ ∂ +  

where 0S  is the entropy of the unpolarized crystal. To a first approximation, we may write 

( )2
0 1

1
2

S S P c T− − ∂ ∂          (22) 

Since P is a continuous function of temperature for the case under consideration and since 
the slope of P2 has a discontinuity at T = Tc, there should be a discontinuity in the specific 
heat, but no latent heat, i.e., the transition is of the second order. 
 
Dielectric constant in case of second-order transition: The dielectric constant can be simply 

written as ( )01 .P Eε ε= +  Above the transition temperature ( )
1 .cT T P

E c P
C
−

= =  So the 
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expression of dielectric constant is 
( )0

1 .
c

C
T T

ε
ε

= +
−  At cT T=  the reciprocal of dielectric 

constant is zero. 
 
First-order transition: 
 

We have seen that spontaneous polarization requires the coefficient c1 to be 
negative. Furthermore, we have seen that if at the same time c2 is positive, a second-order 
transition results.  

We shall now 
consider the case for 
which c2 is negative and 
c3 is positive. Under these 
circumstances it is 
possible for the free 
energy curves to have a 
minimum value for a 
nonzero value of the 
polarization to coexist 
with a minimum for 

0sP = . Assuming that c1 
varies from positive to negative values as the temperature is lowered, one obtains free energy 
curves of the type indicated in Fig. a.  

In the absence of an external field we obtain from the equilibrium condition 
( ) 0

T
F P∂ ∂ =  and from Eq. (14) for the nonvanishing value of the spontaneous polarization   

the equation 2 4
1 2 3 0s sc c P c P− + =         (23)

 A transition from the non-polarized state to a spontaneously polarized state will now 
occur when the minimum of the free energy corresponding to 0sP =  becomes equal to the 

minimum associated with a nonzero value for sP . So we can write that  

( ) ( )0, 0,s c cF P T F T= 2 4 6
1 2 3

1 1 1( ) ( ) ( ) ........ 0
2 4 6s c s c s cc P T c P T c P T⇒ − + + =   (24) 

From Eq. (23),   2 4
1 2 3s sc c P c P= −               (25) 

Putting the value of 1c  in Eq. (24), we obtain 

2 2 4 4 6
2 3 2 3

1 1 1( ) ( ) ( ) 0
2 4 6s c s s s c s cP T c P c P c P T c P T⎡ ⎤⇒ − − + =⎣ ⎦  

4 6
2 3

1 1( ) ( ) 0
4 3s c s cc P T c P T⇒ − =  
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4 2
2 3

1 1( ) ( ) 0
4 3s c s cP T c c P T⎡ ⎤⇒ − =⎢ ⎥⎣ ⎦

 

Either 0sP =  or 22

3

3
( )

4s c

c
P T

c
=         (26) 

It is evident that in this case the polarization jumps at the critical temperature from 
zero to some non-zero value, i.e., the polarization as function of temperature exhibits a 
discontinuity at T = Tc. According to Eq. (22), the entropy will also be discontinuous at T = 
Tc and there will be a latent heat, i.e., the transition is of the first order. 

Using the condition of Eq. (25) in Eq. (26), 
2 2

2 2 22 4
1 2 3 2 3

3 3 3

3 3 3
4 4 16s s

c c c
c c P c P c c

c c c
⎛ ⎞

= − = − =⎜ ⎟
⎝ ⎠

       (27) 

Hence, 
2 2

2 24 1 1

3 3 3 3 3

3 16 39 1 9 1
4 16 16 3s

c c c cP
c c c c c

⎛ ⎞
= = = =⎜ ⎟
⎝ ⎠

     (28) 

We now consider the susceptibility on both sides of the 
critical temperature. As in case of second-order transition, the 
coefficient c1 in the region above the temperature Tc is again 
equal to 1 aχ . In this region the susceptibility follows the 

Curie-Weiss law, so that 1 1 .a
Tc

C
θ χ−

= =
          

(29) 

We find also susceptibility below the critical temperature in 
following manner: 

3 5 2 4
1 2 3 1 2 31 3 5bE F P c P c P c P E P c c P c Pχ= ∂ ∂ = − + ⇒ = ∂ ∂ = − +

( )2
2 21 1

1 2 3 1 1 1 12
3 3 2

3 93 161 3 5 16 16 12 4 4
4 4 3

b

c c Tc cc c c c c c c
c c Cc

θ
χ

−
⇒ = − + = − = − = =   

At the critical temperature c1 is, according to Eq. (29), equal to ( )cT
C
θ−

 and the 

susceptibilities just above and just below Tc  are given by 1 c
a

T
C
θχ −

=  and ( )4
1 c

b

T
C

θ
χ

−
= . 

Dielectric constant in case of first-order transition: 

The expression of dielectric constant is 
( )0

1 .C
T

ε
ε θ

= +
−  At T θ→  the reciprocal of dielectric 

constant is ( )T
C
θ−

. At T θ=  the reciprocal of dielectric constant is zero. But the reciprocal of 

dielectric constant becomes ( )cT
C
θ−

  at .cT T=  
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Ferroelectric domains 
 
 In a ferroelectric crystal, it is likely that the alignment of dipoles in one of the polar 
directions extends only over a region of the crystal and there can be different regions in the 
crystal with aligned dipoles which are oriented in many different directions with respect to one 
another. 
 
 Regions of uniform polarization are called domains, separated by a boundary called 
domain wall. We should not confuse ferroelectric domain walls with the grain boundaries. 
Depending upon the grain size, one grain can have more than one or more domains. The types of 
domain walls that can occur in a ferroelectric crystal depend upon the crystal structure and 
symmetry of both paraelectric and ferroelectric phases.  For instance, rhombohedral phase of 
lead zirconate titanate, Pb(Zr,Ti)O3 has Ps vector along [111]-direction which gives eight 
possible directions of spontaneous polarization with 180°, 71° and 109° domain walls. On the 
other hand, a tetragonal perovskite like PbTiO3 has Ps along the [001]-axis and here domain 
walls are either 180° or 90° domain walls. 
 
 Formation of the domains may also be the result of mechanical constraints associated 
with the stresses created by the ferroelectric phase transition e.g. from cubic paraelectric phase to 
tetragonal paraelectric phase in PbTiO3.  Both 180° and 90° domains minimize the energy 
associated with the depolarizing field but elastic energy is minimized only by the formation of 
90° domains. Combination of both effects leads to a complex domain structure in the material 
with both 90° and 180° domain walls. 
 
Why is there a domain wall? 
 
 The driving force for the formation of domain walls is the minimization of the 
electrostatic energy of the depolarizing field (Ed), due to surface charges due to polarization, and 
the elastic energy associated with the mechanical constraints arising due to ferroelectric-
paraelectric phase transition. This electrostatic energy associated with the depolarizing field can 
be minimized by splitting of the material into oppositely oriented domains or compensation of 
the electrical charge via electrical conduction through the crystal. 


