
Clipping

Developed by

Dr. Arindam Roy

Assistant Professor, Dept. of Comp Sc & Appl., P. K. College, Contai

Window & Viewport: A world coordinate area selected for display is called a window. An area

on a display device to which a window is mapped is called a viewport. The window defines what

is to be viewed, but the viewport defines where it is to be displayed. Often, windows and viewports

rectangles, with edges are parallel to the coordinate axes. Also, in general, polygon shapes and

circles are used in some applications of window and viewport, but these shapes take longer to

process. Generally, the mapping of a world coordinate scene to device coordinates is referred to

as a viewing transformation. This two-dimensional transformation is called as window-to-

viewport transformation. Figure-1 illustrates the mapping of a picture section that falls within a

rectangular window onto a designated rectangular viewport.

In Computer Graphics terminology, the term window originally represent an area of a picture that

is selected for viewing.

Figure-1: A viewing transformation using standard rectangles for the window and viewport

We can observe the objects at different positions on the display area of an output device. Also, by

varying the size of the viewports, we can change the size and properties of the displayed objects.

We achieve zooming effects by successively mapping different-sized windows on a fixed-point

viewport.

Figure-2 illustrates a rotated viewing-coordinate reference frame and the mapping to normalized

coordinates. Clipping procedures are the fundamental importance in computer graphics. They are

used not only in viewing transformations, but also in window-manager systems, in painting and

drawing packages to eliminate parts of a picture inside or outside of a designated screen area, and

in many other applications.

Figure-2: Setting up a rotated world window in viewing coordinates

and the corresponding normalized-coordinate viewport

Window-to-Viewport coordinate transformation

Once object description have been transformed to the viewing reference frame, we choose the

window extents in viewing coordinates and select the viewport limits in normalized coordinates

(Figure-2). Object descriptions are then transferred to normalized device coordinates.

Figure-3: A point at position (xw, yw) in a designated window is mapped to viewport coordinates

(xv, yv) so that relative positions in the two areas are the same.

Figure-3 illustrates the window-to-viewport mapping. A point at position (xw, yw) in the window

is mapped into the position (xv, yv) in the corresponding viewport. To maintain the same relative

placement in the viewport as in the window, we require the following transformations given below.

𝑥𝑣 − 𝑥𝑣𝑚𝑖𝑛

𝑥𝑣𝑚𝑎𝑥 − 𝑥𝑣𝑚𝑖𝑛
=

𝑥𝑤 − 𝑥𝑤𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛
 (1)

𝑦𝑣 − 𝑦𝑣𝑚𝑖𝑛

𝑦𝑣𝑚𝑎𝑥 − 𝑦𝑣𝑚𝑖𝑛
=

𝑦𝑤 − 𝑦𝑤𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛
 (2)

Solving these above two equations for the point (xv, yv) lying in the viewport, we get

 𝑥𝑣 = 𝑥𝑣𝑚𝑖𝑛 + (𝑥𝑤 − 𝑥𝑤𝑚𝑖𝑛)𝑠𝑥 (3)

𝑦𝑣 = 𝑦𝑣𝑚𝑖𝑛 + (𝑦𝑤 − 𝑦𝑤𝑚𝑖𝑛)𝑠𝑦 (4)

Where the scaling factors are

 𝑠𝑥 =
𝑥𝑣𝑚𝑎𝑥−𝑥𝑣𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥−𝑥𝑤𝑚𝑖𝑛
 (5)

 𝑠𝑦 =
𝑦𝑣𝑚𝑎𝑥−𝑦𝑣𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥−𝑦𝑤𝑚𝑖𝑛
 (6)

Equations (3) and (4) can also be derived with a set of transformations that converts the window

area into the viewport area.

Clipping: A Procedure that identifies those portions of a picture that are either inside or outside

of a specified region of a space is referred to as a Clipping algorithm or simply Clipping . The

region against which an object is to clipped is called a Clip Window.

In this process, we consider how to cut off the lines which are outside the window so that only the

lines within the window are displayed. In clipping we examine each line of the display to determine

whether or not it is completely inside the window, lies completely outside the window, or crosses

the window boundary.

 If it is inside, the line will display.

 If it is outside, nothing is drawn.

 If it crosses the boundary, we must determine the point of intersection and draw only those

portions which lie inside.

Figure-4: Examples of Clipping

There are many types of Clipping, and different types of clipping algorithm require different

graphics operation. Such types of Clippings are

(i) Point Clipping

(ii) Line Clipping (Straight line segments)

(iii) Area Clipping (Polygons)

(iv) Curve Clipping

(v) Text Clipping

Here, we discuss two types of Clipping i.e, Point Clipping & Line Clipping.

Point Clipping: A point P(x, y) can be saved for display of clipping window, if the following

inequalities are satisfied.

 𝑥𝑤𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑤𝑚𝑎𝑥

 𝑦𝑤𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑤𝑚𝑎𝑥

Where 𝑥𝑤𝑚𝑖𝑛 and 𝑥𝑤𝑚𝑎𝑥 are edges of the boundaries of clip window parallel to Y axis and 𝑦𝑤𝑚𝑖𝑛

and 𝑦𝑤𝑚𝑎𝑥 are edges of the boundaries of clip window parallel to the X axis.

Figure-5: Point Clipping

In the above shown Figure-5, the points P(x, y) and P2(x, y) are satisfying the above stated

inequalities so that we may not clip those points. However, the points P1(x, y) and P3(x, y) will be

clipped and will not be displayed.

Line Clipping: In line clipping, we examine each line of the display to determine whether it is

completely inside the window, lies completely outside the window, or crosses the window

boundary.

 If the line is inside, the line will display.

 If the line is outside, nothing is drawn.

 If the line crosses the boundary, we must determine the point of intersection and draw only

those portions, which lie inside.

Cohen-Sutherland Line Clipping Algorithm: Cohen-Sutherland proposed a popular method /

algorithm for clipping lines. This algorithm quickly removes lines, which lie entirely one-side of

the clipping region (both endpoints above, or below, or right, or left). It makes clever use of bit

operations (out codes) to perform the required task efficiently. These segment endpoints are each

given4-bit binary codes.

 The high-order bit is set to 1, if the point is above the window.

 Next bit is set to 1, if the point is below the window.

 The third bit 1, indicate the region is right of the window.

 The third bit 1, indicate the region is right of the window.

So, the lines which form the window boundary divide the plane into nine regions with the

codes:

 If the line is entirely within the window, then both endpoints will have the out-code as

0000. The out-codes of other regions are given below:

1000 - Exactly above the window region.

0100 - Exactly below the window region.

0010 - Exactly to the right side of the window.

0001 - Exactly to the left side of the window.

1001 - Top-left to the window.

1010 - Top-right to the window.

0101 - Bottom-left to the window.

0110 - Bottom right to the window.

 Now, we check to see if the line is entirely on one side of the window by taking the logical

AND of the out-codes for the two endpoints. If the result of the AND operation is non-

zero, then the line segment may be rejected.

Thus one test can be decided if the line segment is entirely above, or entirely below, or entirely

to the right, or entirely to the left of the window.

Figure-6: Out-code representation

Cohen-Sutherland Line Clipping Algorithm:

Step-1: First, we compute the out-codes for the two endpoints (P1 and P2) of the segment.

Step-2: Enter into the loop

 Within the loop, we check to see if both out-codes are zero: if so, enter the segment into

the display file, exit the loop, and return.

 If the out-codes are not both zero, then we perform the logical, function, and check a non-

zero result: if this test is non-zero, then we reject the line, exit the loop, and return.

Step-3: If neither of these tests is satisfied, we must subdivide the line segment and repeat the

loop.

 If the out-code for P1 is zero, exchange the points P1 and P2 and also their out-codes.

Find a non-zero bit in the out-code of P1.

 If it is the high-order bit, then find the intersection of the line with the top boundary

of the window.

 If it is the next bit position, then subdivide along the bottom boundary.

 The other two bits indicate that the right and left boundaries should be used.

Step-4: Replace the point P1 with the intersection point and calculate it’s out-code.

 Repeat the loop.

Figure-7: Before Clipping and after Clipping

Example:

Figure-8: Cohen-Sutherland Algorithm example

In the above shown example, the considered line segments are AB, CD, EF, IJ, and ST.

From the above Cohen-Sutherland line clipping algorithm we know that the line segments

AB - completely outside of the window bso it is eliminated.

CD - completely below the window so it is eliminated.

EF - it is also eliminated.

IJ - crosses the window boundary, first we subdivide the line segment into IK, KL, LM,

and MJ. Here we consider the intersection points on the window boundary and perform the

logical AND operation between the out-codes of the two endpoints. If we find the non-zero

result, then reject the line segment otherwise consider to display into window region.

For example logical AND operation the line segments KL and MJ.

KL out-code : 1000

 Logical AND

MJ out-code : 0010

We got, the result as 0000, so the LM line segment is consider for display.

ST - it is completely inside the window boundary, so consider to display.

Figure-9: After Clipping process

