
Data Mining: Decision Tree &
K-Nearest Neighbor
Algorithm

B.Sc. 6th Semester

Department of Computer Science & Applications (Paper Code: CC3)

(Paper Code: DSE4)

Prof. Paulami Basu Ray

Contents

• Decision Tree

• K-Nearest Neighbor Algorithm

Decision Tree

• A Decision Tree is a Classification Algorithm where the training
data is represented as a tree, where each node represents a
test performed on an attribute and each edge represents the
value of the attribute tested, leaves represent the class labels.

• This tree is basically a disjunction of conjunctions.

• A decision tree may be re-represented as IF-THEN-ELSE rules.

Training Data
Day Outlook Temperature Humidity Wind Play Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Weak Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Decision Tree

Outlook

Yes

Humidity Wind

sunny

overcast rain

no yes

high normal

no yes

strong weak

A decision tree for the concept PlayTennis. An example is classified by sorting it
through the tree to the appropriate leaf node, then returning the classification
associated with this leaf (yes or no). This tree classifies Saturday mornings according
to whether or not they are suitable for playing tennis.

Decision Tree

Outlook

Yes

Humidity Wind

sunny

overcast rain

no yes

high normal

no yes

strong
weak

(Outlook = sunny ^ Humidity = normal) V
(Outlook = overcast) V
(Outlook = rain ^ Wind = weak)

ID3 (Iterative Dichotomiser 3)
• Start with empty tree.

• Main loop:
 Split the “best” decision attribute(A) for next node.

 Assign A as decision attribute for node.

 For each value of A, create new descendant of node.

 Sort training examples to leaf nodes.

 If training examples perfectly classified, STOP else iterate over new
leaf nodes.

• Grow tree just deep enough for perfect classification.

Which attribute is the Best Classifier?

• We will use a statistical property called Information Gain, that
measures how well a given attribute separates the training
examples, according to their target classification.

• Entropy measures the homogeneity of an attribute which in
turn is used to calculate the information gain. It is the
optimum number of bits to encode the information about the
certainty or uncertainty of information.

Use Case: Training Data
RID Age Income Student Credit-rating Buy’s

Computer

1 Youth High No Fair no

2 Youth High No Excellent no

3 Middle-aged High No Fair yes

4 Senior Medium No Fair yes

5 Senior Low Yes Fair yes

6 Senior Low Yes Excellent no

7 Middle-aged Low Yes Excellent yes

8 Youth Medium No Fair no

9 Youth Low Yes Fair Yes

10 Senior Medium Yes Fair yes

11 Youth Medium Yes Excellent yes

12 Middle-aged Medium No Excellent yes

13 Middle-aged High Yes Fair yes

14 Senior Medium No Excellent no

Use Case: Test Data

RID Age Income Student Credit
rating

Buys
computer

15 Senior High No Fair Yes

16 Youth Low Yes Fair Yes

17 Senior High No Excellent No

Calculation of Information Gain

In order to define information gain, we begin by defining entropy, that
characterizes the (im)purity of an arbitrary collection of elements.

Entropy(D)= - p+ log2(p+) – p- log2(p-)
Where p+ is the proportion of positive examples and p- is the proportion of
negative examples. This can be extended in case of multi-class classification.

Entropy(D) = σ𝑖=1
𝑐 −𝑝𝑖 lg 𝑝𝑖

Entropy([9+,5-])= -9/14 X log2(9/14) – 5/14 X log2(5/14) =0.940

 Entropy is 0 if all members of D belong to the same class.

 Entropy is 1 when the collection contains an equal number of positive and
negative examples.

 If the collection contains unequal number of positive and negative
examples, the entropy is between 0 and 1.

Calculation of Information Gain

 Given entropy as a measure of the impurity in a collection of training
examples, we can now define a measure of the effectiveness of an attribute
in classifying the training data.

 The measure to use, called information gain, is the expected reduction in
entropy caused by partitioning the examples, according to this attribute.

 The information gain, Gain(A) of an attribute A is defined as:

Gain(A)=Entropy(D) - σ𝑗=1
𝑣 𝐷𝑗 /|𝐷| X Entropy(Dj) , where A ἐ D

InfoA(D)= σ𝑗=1
𝑣 𝐷𝑗 /|𝐷| X Entropy(Dj) , where A ἐ D

Gain(A)=Entropy(D)-InfoA(D)

Calculation of Information Gain

Values(Age) = Youth, Middle-aged, Senior

InfoAge(D)= [5/14 {-1/4lg(1/4) – 3/4lg(3/4)}]+ [4/14 {-4/4lg(1)}] +
[5/14{-3/4lg(3/4)-1/4lg(1/4)}]

InfoAge(D)= 0.694

Gain(Age)=0.940 – 0.694 = 0.246

Similarly,

Gain(Income)= 0.029

Gain(student)=0.151

Gain(credit_rating)=0.048

Income Student Credit_rat
ing

Buys_Com
puter

High No Fair no

High No Excellent no

Mediu
m

No Fair no

Low Yes Fair yes

Mediu
m

Yes Excellent yes

Age

Income Student Credit_ra
ting

Buys_Co
mputer

Medium No Fair yes

Low Yes Fair yes

Low Yes Excellen
t

no

Medium Yes Fair yes

Medium No Excellen
t

no

Buys_Computer=
yes

Youth Middle_aged Senior

D1 D2

Calculating Gain for D1 & D2

• Entropy(D1)= -2/5 X log2(2/5) – 3/5 X log2(3/5) =0.9709

• InfoIncome (D1)= 0.4

• Gain (Income) = 0.9709 - 0.4 = 0.5709

• Gain (Student) = 0.9709 - 0 = 0.9790

• Gain (Credit_Rating) = 0.9709 - 0.9507 = 0.0202

• Entropy(D2)=– 3/5 X log2(3/5) -2/5 X log2(2/5) =0.9709

• InfoIncome (D2)= 0.9507

• Gain (Income) = 0.9709 - 0.9507 = 0.0202

• Gain (Student) = 0.9709 - 0.9507 = 0.0202

• Gain (Credit_Rating) = 0.9709 - 0= 0.9709

Final Decision Tree
Age

Student
Credit_Ratin

g

yes no

Youth
Senior

yes

Middle_Aged

yes no

Fair Excellent

yes no

New Data

Age

Student Credit_Rating

yes no

Youth Senior

yes

RID Age Income Student Credit_Rating Buys_Comput
er

15 Senior High No Fair ?

Middle_Aged

yes no Fair
Excellent

yes no

New Data

Age

Student Credit_Rating

yes no

Youth Senior

yes

RID Age Income Student Credit_Rating Buys_Comput
er

16 Youth Low Yes Fair ?

Middle_Aged

yes no
Fair Excellent

yes no

New Data

Age

Student Credit_Rating

yes no

Youth Senior

yes

RID Age Income Student Credit_Rating Buys_Comput
er

17 Senior High No Excellent ?

Middle_Aged

yes no
Fair Excellent

yes no

K Nearest Neighbor (KNN)

• It is an example of instance based learning approach, where
there is need to store the entire training data.

• The KNN algorithm assumes that similar things exist in close
proximity.

Euclidean Distance

Example/ Demonstration

X1 X2 CLASS(Y)

1 2 1

9 12 2

2 3 1

4 5 2

10 11 2

X1 X2

3 4

Training Data:

Test Point/New Point

X1 X2 CLASS(Y) Dist.

1 2 1 √8

9 12 2 √100

2 3 1 √2

4 6 2 √5

10 11 2 √98

X1 X2 CLASS(Y) Dist.

2 3 1 2

4 6 2 5

1 2 1 8

10 11 2 98

9 12 2 100

Calculation of Distance of each Training Point from Test Point

Sort the previous table in Ascending order of Distance(ignoring √)

X1 X2 CLASS(Y) Dist.

2 3 1 2

4 6 2 5

1 2 1 8

10 11 2 98

9 12 2 100

Assuming the value of K=3

After Majority Voting : Y = 1

