
Software Engineering:

Lifecycle Models
BCA 4th Semester (Paper Code:2204)/ B.Sc. 4th Semester (Paper Code: CC9)

Department of Computer Science and Applications

Prof. Paulami Basu Ray

Software/System Development Life Cycle

SDLC is a process which defines
the various stages involved in
the development of software
for delivering a high-quality

product. SDLC stages to cover
the complete life cycle of a

software i.e. from inception to
retirement of the product.

Adhering to the SDLC process
leads to the development of
the software in a systematic

and disciplined manner.

SDLC

SDLC

Feasibility

Analysis

Feasibility analysis checks the
following two points with respect to
a new software development
project:

Technically Feasible

Financially Feasible

Other Phases

 Requirement Gathering and analysis − All possible requirements of the system to be
developed are captured in this phase and documented in a requirement specification
document (SRS – Software Requirement and Specification).

 System Design − The requirement specifications from first phase are studied in this phase
and the system design is prepared. This system design helps in specifying hardware and
system requirements and helps in defining the overall system architecture. It includes
designs such as ER diagrams, DFD etc.

 Implementation − With inputs from the system design, the system is first developed in
small programs called units, which are integrated in the next phase. Each unit is
developed and tested for its functionality, which is referred to as Unit Testing.

 Integration and Testing − All the units developed in the implementation phase are
integrated into a system after testing of each unit. Post integration the entire system is
tested for any faults and failures.

 Deployment of system − Once the functional and non-functional testing is done; the
product is deployed in the customer environment or released into the market.

 Maintenance − There are some issues which come up in the client environment. To fix
those issues, patches are released. Also to enhance the product some better versions
are released. Maintenance is done to deliver these changes in the customer
environment.

Waterfall

Model
The waterfall Model illustrates the software

development process in a linear sequential flow. This
means that any phase in the development process
begins only if the previous phase is complete. In this

waterfall model, the phases do not overlap.

The Waterfall Model was the first Process Model to be
introduced. It is also referred to as a linear-sequential
life cycle model. It is very simple to understand and

use. In a waterfall model, each phase must be
completed before the next phase can begin and

there is no overlapping in the phases.

Waterfall Model

Waterfall
Model -
Applications

Requirements are very well documented, clear
and fixed.

Product definition is stable.

Technology is understood and is not dynamic.

There are no ambiguous requirements.

Ample resources with required expertise are
available to support the product.

The project is short.

Waterfall
Model-
Advantages

Simple and easy to understand and use

Easy to manage due to the rigidity of the model. Each phase has
specific deliverables and a review process.

Phases are processed and completed one at a time.

Works well for smaller projects where requirements are very well
understood.

Clearly defined stages.

Well understood milestones.

Easy to arrange tasks.

Process and results are well documented.

Waterfall
Model-
Disadvantages

 No working software is produced until late during the life
cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented
projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a
moderate to high risk of changing. So, risk and
uncertainty is high with this process model.

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 Adjusting scope during the life cycle can end a project.

 Integration is done as a "big-bang. at the very end,
which doesn't allow identifying any technological or
business bottleneck or challenges early.

Prototype

Model

 The Prototyping Model is one of the most popularly used Software
Development Life Cycle Models (SDLC models).

 This model is used when the customers do not know the exact
project requirements beforehand. In this model, a prototype of the
end product is first developed, tested and refined as per customer
feedback repeatedly till a final acceptable prototype is achieved
which forms the basis for developing the final product.

 In this process model, the system is partially implemented before or
during the analysis phase thereby giving the customers an
opportunity to see the product early in the life cycle.

 The process starts by interviewing the customers and developing
the incomplete high-level paper model. This document is used to
build the initial prototype supporting only the basic functionality as
desired by the customer. Once the customer figures out the
problems, the prototype is further refined to eliminate them. The
process continues till the user approves the prototype and finds the
working model to be satisfactory.

Prototype Model

Prototyping Model
 Prototyping is defined as the process of developing a working replication of

a product or system that has to be engineered. It offers a small scale

replica of the end product and is used for obtaining customer feedback as

described below:

Two
approaches
of the
Prototype
Model

Rapid Throwaway Prototyping –
This technique offers a useful method of exploring ideas
and getting customer feedback for each of them. In this
method, a developed prototype need not necessarily be
a part of the ultimately accepted prototype. Customer
feedback helps in preventing unnecessary design faults
and hence, the final prototype developed is of a better
quality.

Evolutionary Prototyping –
In this method, the prototype developed initially is
incrementally refined on the basis of customer feedback
till it finally gets accepted. In comparison to Rapid
Throwaway Prototyping, it offers a better approach which
saves time as well as effort. This is because developing a
prototype from scratch for every iteration of the process
can sometimes be very frustrating for the developers.

Prototype Model - Applications

This model is used when the
customers do not know the
exact project requirements

beforehand.

Prototype model should be used
when the desired system needs
to have a lot of interaction with
the end users. Typically, online
systems, web interfaces have a
very high amount of interaction

with end users, are best suited for
Prototype model.

Prototype
Model
Advantages

The customers get to see the partial product early in the life cycle.
This ensures a greater level of customer satisfaction and comfort.

New requirements can be easily accommodated as there is
scope for refinement.

Missing functionalities can be easily figured out.

Errors can be detected much earlier thereby saving a lot of effort
and cost,

besides enhancing the quality of the software.

The developed prototype can be reused by the developer for
more complicated

projects in the future.

Flexibility in design.

Prototype
Model
Disadvantages

Costly with respect to time as well as money.

There may be too much variation in requirements each time the

prototype is evaluated by the customer.

Poor Documentation due to continuously changing customer

requirements.

It is very difficult for the developers to accommodate all the

changes demanded by the customer.

There is uncertainty in determining the number of iterations that

would be required before the prototype is finally accepted by

the customer.

Iterative Model

In the Iterative model, iterative process
starts with a simple implementation of a
small set of the software requirements
and iteratively enhances the evolving
versions until the complete system is

implemented and ready to be
deployed.

An iterative life cycle model does not
attempt to start with a full specification
of requirements. Instead, development
begins by specifying and implementing
just part of the software, which is then

reviewed to identify further
requirements. This process is then

repeated, producing a new version of
the software at the end of each

iteration of the model.

Iterative Model

 Iterative process starts with a
simple implementation of a subset
of the software requirements and
iteratively enhances the evolving
versions until the full system is
implemented. At each iteration,
design modifications are made
and new functional capabilities
are added. The basic idea behind
this method is to develop a system

through repeated cycles
(iterative) and in smaller portions
at a time (incremental).

Iterative Model

Iterative
Model-
Applications

Major requirements must be defined; however, some
functionalities or requested enhancements may evolve
with time.

There is a time to the market constraint.

A new technology is being used and is being learnt by
the development team while working on the project.

Resources with needed skill sets are not available and
are planned to be used on contract basis for specific
iterations.

There are some high-risk features and goals which may
change in the future.

Iterative
Model
Advantages

 Some working functionality can be developed quickly and early in the life
cycle.

 Results are obtained early and periodically.

 Parallel development can be planned.

 Progress can be measured.

 Less costly to change the scope/requirements.

 Testing and debugging during smaller iteration is easy.

 Risks are identified and resolved during iteration; and each iteration is an
easily managed milestone.

 Easier to manage risk - High risk part is done first.

 With every increment, operational product is delivered.

 Issues, challenges and risks identified from each increment can be
utilized/applied to the next increment.

 Risk analysis is better.

 It supports changing requirements.

 Initial Operating time is less.

 Better suited for large and mission-critical projects.

 During the life cycle, software is produced early which facilitates customer
evaluation and feedback.

Iterative Model
Disadvantages

More resources may be required.

Although cost of change is lesser, but it is not very suitable for changing
requirements.

More management attention is required.

System architecture or design issues may arise because not all requirements
are gathered in the beginning of the entire life cycle.

Defining increments may require definition of the complete system.

Not suitable for smaller projects.

Management complexity is more.

End of project may not be known which is a risk.

Highly skilled resources are required for risk analysis.

Projects progress is highly dependent upon the risk analysis phase

Spiral

Model

 The spiral model combines the idea of iterative

development with the systematic, controlled aspects of

the waterfall model. This Spiral model is a combination

of iterative development process model and sequential

linear development model i.e. the waterfall model with

a very high emphasis on risk analysis. It allows

incremental releases of the product or incremental

refinement through each iteration around the spiral.

Spiral Model
The spiral model has four phases. A software project repeatedly passes through these phases in
iterations called Spirals.

 Identification

 This phase starts with gathering the business requirements in the baseline spiral. In the subsequent
spirals as the product matures, identification of system requirements, subsystem requirements and
unit requirements are all done in this phase.

 This phase also includes understanding the system requirements by continuous communication
between the customer and the system analyst. At the end of the spiral, the product is deployed in
the identified market.

 Design

 The Design phase starts with the conceptual design in the baseline spiral and involves architectural
design, logical design of modules, physical product design and the final design in the subsequent
spirals.

 Construct or Build

 The Construct phase refers to production of the actual software product at every spiral. In the
baseline spiral, when the product is just thought of and the design is being developed a POC
(Proof of Concept) is developed in this phase to get customer feedback.

 Then in the subsequent spirals with higher clarity on requirements and design details a working
model of the software called build is produced with a version number. These builds are sent to the
customer for feedback.

 Evaluation and Risk Analysis

 Risk Analysis includes identifying, estimating and monitoring the technical feasibility and
management risks, such as schedule slippage and cost overrun. After testing the build, at the end
of first iteration, the customer evaluates the software and provides feedback.

Spiral Model

Spiral Model

Applications

When there is a budget constraint and risk evaluation is
important.

For medium to high-risk projects.

Long-term project commitment because of potential changes
to economic priorities as the requirements change with time.

Customer is not sure of their requirements which is usually the
case.

Requirements are complex and need evaluation to get clarity.

New product line which should be released in phases to get
enough customer feedback.

Significant changes are expected in the product during the
development cycle.

Spiral Model
Advantages

Changing requirements can be accommodated.

Allows extensive use of prototypes.

Requirements can be captured more accurately.

Users see the system early.

Development can be divided into smaller parts and the
risky parts can be developed earlier which helps in better
risk management.

Spiral Model
Disadvantages

Management is more complex.

End of the project may not be known early.

Not suitable for small or low risk projects and
could be expensive for small projects.

Process is complex

Spiral may go on indefinitely.

