3. (a) What is space group?
(2)
(b) Derive the dispersion relation for a linear diatomic lattice. Sketch the dispersion relation indicating the two branches clearly in the graph. (4+2)
(c) What are meant by normal and Umklapp processes?
4. (a) Prove the equivalence between vibrational mode in a solid and a harmonic oscillator.
(b) What is geometrical structure factor? Show that the factor vanishes unless the number $h, k$ and $l$ are all even or all odd for f.c.c. lattice.

## 2015

M.Sc.

## $1{ }^{\text {st }}$ Semester Examination

 PHYSICS
## PAPER - PGS-102 (Gr. - A + B)

Full Marks : 50
Time : 2 Hours
The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

## (Gr. A - Quantum Mechanics I)

 Answer Q1 and any one from Q2 and Q3.1. Answer any five bits:
(i) A particle of mass $m$ is confined in a two-dimensional square well potential of dimension a. The potential $\mathrm{V}(x, y)$ is given by

$$
\begin{aligned}
\mathrm{V}(x, y) & =0 \text { for }-\mathrm{a}<x<\mathrm{a} \text { and }-\mathrm{a}<y<\mathrm{a} ; \\
& =\infty \text { elsewhere. }
\end{aligned}
$$

Find out the energy of the first excited state for this particle.
(ii) A particle is constrained to move in a truncated harmonic potential well $(x>0)$ as shown in the figure. Find out the energy of the first excited state of this particle with explanation.


## Page - 02

(iii) The wavefunction of a particle is given by $\psi=\frac{\varphi_{0}}{\sqrt{2}}+\frac{i \varphi_{1}}{\sqrt{2}}$ where $\varphi_{0}$ and $\varphi_{1}$ are the normalized eigenfunctions with energies $E_{0}$ and $E_{1}$ corresponding to the ground state and the first excited state, respectively. Calculate the expectation value of the Hamiltonian in the state $\psi$.
(iv) Find the value of commutator $\left[L_{z}, \cos \varphi\right]$ where $\varphi$ is the azimuthal angle and $\cos \varphi$ is the operator.
(v) Show that the norm of the state vector evolving from the Schrodinger Picture remains invariant with respect to time.
(vi) Deduce the parity of spherical harmonics $Y_{l m}(\theta, \varphi)$.
(vii) For what values of the constant $c$ will be the function $f(x)=A e^{-\alpha x}$ be an eigenfunction of the operator $\hat{Q}=\frac{d^{2}}{d^{2} x}+\frac{2}{x} \frac{d}{d x}+\frac{c}{x}$ ?
(vii) If $\hat{A}$ and $\hat{B}$ are Hermitian operators, prove that $(\hat{A} \hat{B}+\hat{B} \hat{A})$ is Hermitian but $(\hat{A} \hat{B}-\hat{B} \hat{A})$ is non-Hermitian.
2. (a) Considering the operator $a=\frac{i}{\sqrt{2 m h \omega}}(\hat{p}-i m \hat{x})$ and its adjoint prove that $H|n\rangle=(n+1 / 2) \mathrm{h} \omega|n\rangle$ for a linear harmonic oscillator where the symbols have their usual meanings.
(b) Sketch the ground state wavefunction of hydrogen atom and hence, obtain the expectation value of $r^{2}$ in this state.
(c) Discuss the equations of motion for both the wavefunction and operator in interaction picture.
3. (a) The wavefunction for a particle is represented as $\psi(\vec{r}, t)=\sum_{n} a_{n}(t) u_{n}(\vec{r})$ where $H u_{n}(\vec{r})=\varepsilon_{n} u_{n}(\vec{r})$. Show that $\langle\psi| H|\psi\rangle=\sum_{n}\left|a_{n}(t)\right|^{2} \varepsilon_{n}$. (3)

Page - 03
(b) A three level quantum system has energy eigenvalues $0,1,2 \mathrm{MeV}$. If the probabilities for the system, at time t , to be in the first eigenstates are $49 \%$ and $36 \%$ respectively, write down the wavefunction $\psi(\stackrel{1}{r}, t)$ for the system.
(c) Prove that the ground-state wavefunction of a linear harmonic oscillator is Gaussian.
(d) A particle is confined to a box of length L with walls $x=0$ and $x=L$. The particle is described by a wavefunction $\psi=N \sin (3 \pi x / 2 L) \cos (\pi x / 2 L)$. Find the energy of the particle.

## (Gr. B - Solid State Physics I)

## Answer Q1 and Q2 and any one from Q3 and Q4.

1. Answer any two bits:
$2 \times 2=4$
(i) Show that five-fold rotational axis does not exist in a lattice system.
(ii) Find the packing fraction of the hcp structure.
(iii) The primitive lattice translation vectors of hexagonal space lattice may be taken as, $\overrightarrow{a_{1}}=\left(\frac{\sqrt{3}}{2} a\right) \hat{\imath}+\left(\frac{1}{2} a\right) \hat{\jmath} ; \overrightarrow{a_{2}}=-\left(\frac{\sqrt{3}}{2} a\right) \hat{\imath}+\left(\frac{1}{2} a\right) \hat{\jmath} ; \overrightarrow{a_{3}}=c \hat{k}$.
Show that the lattice is its own reciprocal, but with a rotation of axis.
2. Answer any two bits:
$3 \times 2=6$
(i) What is Brillouin Zone? How can it be constructed using Bragg's diffraction condition?
(ii) Find the dispersion relation for mono-atomic lattice.
(iii) Find out the structure factor for the basis of diamond and prove that if all indices are even, the structure factor of the basis vanishes unless $h+k+l=4 n$, where $n$ is an integer.
(Turn Over)
