2. (a) Using $F_{1}=\frac{1}{2} m \omega q^{2} \cot Q$ as generating function, obtain an expression for the displacement of LHO.
(b) Two identical simple pendulums each having length l and a bob of mass m are coupled to each other by a horizontal massless spring constant k, the spring is not in stretched condition when the two bobs are in equilibrium. Find out the normal frequencies.
3. (a) Prove that Poisson Bracket of two variable F and q remains invariant under canonical transformation.
(b) Write down the Lagrangian of a particle moving under an inverse square attractive force field. Hence obtain the Hamiltonian of the particle. Find the cyclic coordinatein Lagrangian and Hamiltonian.
(3)
(c) Write down the Hamiltonian of a heavy symmetrical top. Comment on the precession related to its motion.
(Internal Assessment - 10)

Page - 02
(vi) Using $f\left(r e^{i \theta}\right)=R(r, \theta) e^{i \Theta(r, \theta)}$ in which $R(r, \theta)$ and $\Theta(r, \theta)$ are differentiable real functions of r and θ, show that the Cauchy-Riemann conditions in polar coordinates become

$$
\frac{\partial R}{\partial r}=\frac{R}{r} \frac{\partial \Theta}{\partial r} \text { and } \frac{1}{r} \frac{\partial R}{\partial r}=-R \frac{\partial \Theta}{\partial r}
$$

(vii) Find out the residues of the function $f(z)=\frac{z^{3}}{(z-1)(z-2)(z-3)}$ at infinity and $z=$ 3.
(viiii) Discuss the nature of singularity of the function $f(z)=e^{1 / z}$ at $\mathrm{z}=0$.
2. (a) Two matrices \boldsymbol{U} and H are related by $U=e^{i \alpha H}, \alpha$ is real. If H is Hermitian, Show that U is unitary.
(b) For $x>0$, Prove that $\frac{-\frac{3}{2}}{2}(x)=\left(-\sin x-\frac{\cos x}{x}\right) \sqrt{\frac{2}{\pi x}}$.
(c) Evaluate $\oint_{C} \frac{d z}{z^{2}-1}$ where C is the circle $|z|=2$.
3. (a) Solve the hypergeometric equation:
$x(1-x) \frac{d^{2} y}{d x^{2}}+[\gamma-(1+\alpha+\beta) x] \frac{d y}{d x}-x \beta y=0$ in series near $x=0$.
(b) State and prove Cauchy's residue theorem.
(c) Apply the Gram-Schmidt process to obtain an orthogonal basis from the basis set $\left\{1, x, x^{2}\right\}$ of the inner product space
$P_{2}(R)=\{p(x): p(x)$ is a polynomial of degree ≤ 2 with real coefficients $\}$
with the inner product $\langle f(x), g(x)\rangle=\int_{-1}^{1} f(t) g(t) d t$.
...Continued

(Gr. B - Classical Mechanics)

1. Answer any five bits:
$5 \mathrm{X} 2=10$
(i) Consider a system of N particles subjected to k independent holonomic constraints that do not depend on time explicitly. Then transformation from Cartesian $3 N$ coordinates to f-independent generalized coordinates q_{i} have the following form:
$x_{\mathrm{j}}=x_{\mathrm{j}}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots ., \mathrm{q}_{\mathrm{f}}\right), j=1,2,3, \ldots, 3 N$ and $f=3 N-k$. Show that the kinetic energy can be written as a quadratic form $\frac{1}{2} \sum_{i j} a_{i j} \dot{q}_{i} \dot{q}_{j}$.
(ii) The Lagrangian of a charged particle is given by $L=\frac{1}{2} m v^{2}-q \varphi+q(\vec{v} \cdot \vec{A})$. Find its Hamiltonian
(iii) Prove that the generating function $F=\sum_{i} q_{i} p_{i}$ generates the identity transformation.
(iv) Show that the transformation with $P=\frac{1}{2}\left(p^{2}+q^{2}\right)$ and $Q=\tan ^{-1}\left(\frac{q}{p}\right)$ is canonical.
(v) Distinguish between stable equilibrium and unstable equilibrium with suitable examples.
(vi) Show that for a rigid body torque is due to the external force only, internal force does not contribute at all.
(vii) Show that in the body system, the axes of the distance of the tangent plane from the origin remain invariant.
(viii) Consider any arbitrary function F of coordinates $\left(q_{\mathrm{k}}\right)$, canonical momenta $\left(p_{\mathrm{k}}\right)$ and time (t). Show that $\frac{d F}{d t}=\frac{\partial F}{\partial t}+[F, H]_{P B}$.
(Turn Over)
